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ScienceDirect
Network neuroscience research is providing increasing

specificity on the contribution of large-scale brain networks to

creative cognition. Here, we summarize recent experimental

work examining cognitive mechanisms of network interactions

and correlational studies assessing network dynamics

associated with individual creative abilities. Our review

identifies three cognitive processes related to network

interactions during creative performance: goal-directed

memory retrieval, prepotent-response inhibition, and internally-

focused attention. Correlational work using prediction

modeling indicates that functional connectivity between

networks — particularly the executive control and default

networks — can reliably predict an individual’s creative thinking

ability. We discuss potential directions for future network

neuroscience, including assessing creative performance in

specific domains and using brain stimulation to test causal

hypotheses regarding network interactions and cognitive

mechanisms of creative thought.
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The cognitive neuroscience of creativity has made con-

siderable progress by mapping brain networks involved in

creative cognition. In a recent review of studies examin-

ing creative cognition and artistic performance, we

reported a consistent pattern of functional network con-

nectivity that was characterized by interactions between

the Default Network (DN) and the Executive Control

Network (ECN; [1]). The DN is a set of midline and

posterior inferior parietal brain regions that support self-

referential and spontaneous thought processes such as
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mind wandering, episodic and semantic memory

retrieval, and mental simulation [2,3]. The ECN consists

of lateral prefrontal and anterior inferior parietal regions

that support cognitive control processes such as response

inhibition, goal maintenance, and attention control [4].

Our previous review [1] proposed that, during creative

task performance, the interaction of the DN and the ECN

may reflect goal-directed, self-generated cognition, with

DN involved in idea generation and ECN in guiding,

constraining, and modifying DN processes to meet crea-

tive task goals (cf. [5–8]).

Despite signs of convergence in the literature, important

questions remain: (a) What are the specific cognitive

mechanisms that underlie network interactions during

creative cognition? and (b) How might network dynamics

relate to individual differences in creative thinking abil-

ity? The current review aims to update and extend the

literature in light of several studies that have begun to

address these questions. This research can be broadly

categorized into experimental and correlational investi-

gations, with experimental work largely focused on link-

ing brain network interactions to specific cognitive mech-

anisms. Correlational work is further categorized into

studies (a) using prediction methods to estimate individ-

ual creative ability from patterns of brain connectivity and

(b) reporting correlations between various network prop-

erties and creative ability. We conclude the review by

offering suggestions for future research to further isolate

cognitive mechanisms and individual differences in the

creative brain.

Cognitive mechanisms and brain networks of
creative cognition
Increasing behavioral and neuroimaging evidence sug-

gests that creative cognition involves some aspects of

cognitive control, including goal-directed memory retrieval:
the ability to strategically search episodic and semantic

memory for task-relevant information. A recent fMRI

study [9] examined brain networks supporting episodic

retrieval during divergent thinking. The study manipu-

lated the kind of retrieval process engaged during creative

cognition via an episodic specificity induction (ESI): brief

training in recalling details of a recent event, which can

prime or facilitate the involvement of episodic retrieval

mechanisms in subsequent tasks, including creativity and

imagination tasks (for review, see [10]). A behavioral

study previously showed that ESI enhances divergent
www.sciencedirect.com
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thinking performance on the AUT [11]. Consistent with

this work, in the fMRI study [9], participants generated

more novel and appropriate uses (i.e. flexibility measure

on the AUT) following ESI compared to a control induc-

tion. Critically, functional connectivity analysis revealed

stronger coupling between a cognitive control network

and a core (default) network comprised of memory-

related brain regions (hippocampus) after ESI than after

a control induction. In this context, DN-ECN coupling

appears to reflect goal-directed retrieval processes

recruited to strategically search, select, and combine

elements of past experience during divergent thinking.

Another cognitive control function linked to creative cog-

nition is prepotent-response inhibition: the ability to suppress

interference from dominant or salient response tendencies

[12] such as obvious concepts or ideas that come to mind

during divergent thinking [13]. In contrast to convergent

thinking — which involves the discovery of the correct

solution to a problem — divergent thinking tasks measure

people’s ability to generate several possible solutions to a

problem or prompt, such as thinking of novel uses for

common objects, as in the Alternate Uses Task (AUT).1

Behavioral work [12] has shown that divergent thinking

ability is strongly correlated with performance on response

inhibition tasks, suggesting that creative individuals may

be better able to suppress interference from competing

concepts during divergent thinking.

In a recent fMRI experiment of pre-potent response inhi-

bition [14], we examined brain networks underlying

semantic interference in the context of the classic verb

generation task. During the initial phase, participants stud-

ied a list of noun and verb pairs; during the second phase,

participants were presented with studied (‘high-con-

straint’) and unstudied (‘low-constraint’) nouns and asked

to ‘think creatively’ while searching for uncommon verbs to

relate to each noun [15]. We found that the semantic

distance between nouns and verbs, assessed computation-

ally via latent semantic analysis, was greater in the low-

constraint comparedto thehigh-constraint condition, likely

due to greater interference from the prepotent (studied)

verb response disrupting remote conceptual combination

in the high-constraint condition. Critically, functional con-

nectivity analyses revealed stronger functional coupling of

anterior DN and left ECN regions in thehigh- than the low-

constraint condition. These findings highlight another

mechanism of DN-ECN coupling: the activation of a

prepotent, automatic response via the DN (cf. [16]) and

its inhibition via the ECN.

Creative cognition has recently been hypothesized to

invoke a state of internally-focused attention: the focusing
1 AUT responses are commonly coded for fluency (i.e., total number

of ideas), flexibility (i.e., total number of conceptual categories of ideas),

and originality (i.e., creative quality of ideas).
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of attention on self-generated thought processes and the

shielding of internal processes from external interference

[17�]. A recent study [18] sought to dissociate neural circuits

supporting external vs. internal attention and divergent vs.

convergent thinking. Thedirection of attention was manip-

ulated by controlling how stimuli were presented during

divergent and convergent thinking tasks. In one condition,

stimuli were visible for the duration of a trial, allowing

participants to continuously view the stimulus (i.e. ‘exter-

nal attention’ condition); in another condition, stimuli were

presented very briefly at the beginning of the trial and thus

required internal maintenance (‘internal attention’ condi-

tion). Compared to external attention, divergent thinking

requiring internalattentionwas related to increasedactivity

of the right anterior inferior parietal lobule (IPL), corre-

sponding to a posterior hub of the ECN. Functional con-

nectivity analyses further revealed stronger coupling

between the right IPL and visual cortex in the internal

condition. Thus, posterior ECN regions may play a role in

directing attentional resources during divergent thinking

by attenuating sensory input and focusing attention to

internally-directed cognitive processes.

In sum, network neuroscience methods are beginning to

provide insight into specific cognitive mechanisms

related to network interactions during creative cognition.

Figure 1 depicts the network interactions and correspond-

ing cognitive mechanisms identified in the literature thus

far. This work has demonstrated that DN-ECN coupling

reflects both goal-directed episodic memory retrieval [9]

and prepotent-response inhibition of semantic informa-

tion [14]. Moreover, posterior ECN regions can interact

with sensory cortices to attenuate external input and

shield internal thought processes during idea generation

[18]. Future research should continue to employ experi-

mental paradigms to elucidate specific mechanisms

underlying other modes of creative thought (e.g. figura-

tive language production; [19]) and extend correlational

findings using causal modeling to determine the direction

of between-network information flow (cf. [20��]).

Individual differences in brain connectivity
and creative ability
The past few years have seen a substantial increase in the

number of studies examining how individual creative ability

relates to variation in brain network connectivity.  Table 1

lists the individual differences work conducted within the

last two years (i.e. 2017–2018). New connectomic methods

have been developed to characterize individual differences

in personality and cognitive ability, such as connectome-

based predictive modeling (CPM), which uses whole-brain

connectivity patterns to predict individual traits and cogni-

tive abilities [21–26]. CPM was recently used to identify

functional connections correlated with high and low creative

ability in a sample of 163 participants engaged in divergent

thinking during fMRI [21]. A ‘high-creative’ network con-

sisted of default, salience, and executive network hubs; a
Current Opinion in Behavioral Sciences 2019, 27:22–30
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Figure 1
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Cognitive mechanisms of brain network interactions during creative

cognition. Notes. DN = default network; ECN = executive control

network; VN = visual network.
‘low-creative’ network consisted of default, sensory, and

cerebellar nodes (see Figure 2). Critically, the high-creative

network generalized to predict divergent thinking ability in

three independent samples of participants whose data were

not used in model construction. Participants with stronger

functional connections in this network thus tended to pro-

duce more original ideas.

Other work using similar prediction methods [27�] has

combined resting-state fMRI and genetic data to predict

figural divergent thinking ability (i.e. visual-spatial; e.g.

drawing). A model including both fMRI and genetic data

showed better prediction of divergent thinking than

models with separate fMRI and genetic data, and findings

generalized to an independent sample of participants.

Notably, although the ‘high-creative’ network reported in

this study showed some overlap with the high-creative

network of the task-based CPM study noted above [21],

the networks also showed considerable differences, likely

due to variation in divergent thinking assessment (figural

vs. verbal) and the type of imaging data (rest vs. task).

Prediction modeling has also been used in longitudinal

research to estimate future divergent thinking ability

from structural brain networks [28]: executive network

maturation, assessed via changes in grey-matter density,

tracked improvements in divergent thinking ability three

years later.
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Several correlational studies have further investigated

large-scale network characteristics associated with indi-

vidual differences in creative thinking ability. Building

on earlier seed-based studies reporting correlations

between divergent thinking ability and resting-state

functional connectivity (RSFC; e.g. [29–32]), a recent

study [33��] found that divergent thinking ability was

related to increased RSFC between the left inferior

frontal gyrus (IFG) of ECN and medial prefrontal cortex

(MPFC) of the DN. This finding is consistent with

earlier work [29] showing increased coupling between

left IFG and MPFC in a high divergent thinking group.

Several studies applied graph theoretical metrics such as

global efficiency (i.e. the average shortest number of

paths needed to traverse a given pair of brain regions) to

assess information processing between network nodes.

Other related work [34] found that a high divergent

thinking group showed greater global efficiency within

a resting-state network of executive and default nodes,

similar to previous task-based research reporting a posi-

tive correlation between divergent thinking ability and

global efficiency within a network of executive, salience,

and default nodes [35]. The correspondence between

resting-state and task-based networks was recently

investigated in another study [36�] that found execu-

tive-default coupling at rest predicted executive-default

during divergent thinking, highlighting a link between

network connectivity at rest and during task

performance.

Dynamic connectivity research has complemented static

connectivity findings by examining how network con-

nectivity patterns shift over short time scales. One study

[37��] found that temporal variability of functional con-

nectivity among executive (DLPFC) and default (pre-

cuneus and parahippocampal gyrus) network regions

assessed at rest correlated with verbal creative thinking

ability. The authors report several additional analyses

examining within- and between-network variability and

show that verbal creativity relates to between-network

variability of other canonical networks beyond the DN

and ECN (see Figure 3). Interestingly, of the 13 net-

works assessed in this study, only DN within-network

variability correlated with creativity scores, highlighting

a possible correspondence between neural variability

within the DN and thought variability relevant to crea-

tive cognition.

Another recent study of connectivity dynamics [38�]
assessed network transitions in high and low divergent

thinking groups and found that high divergent thinking

ability was characterized by more frequent transitions

between different brain connectivity ‘states’ (i.e. recurring

patterns of correlation between cortical networks), suggest-

ing that flexible thinking may be marked by a more plastic

brain. A related study exploring dynamic connectivity

linked to Openness to Experience — a personality trait
www.sciencedirect.com
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Table 1

Correlational studies of individual differences in creative ability and functional connectivity (2017–2018)

Study Sample size MRI data Creativity task(s) Network analysis Results

Beaty et al. (2018) n = 163 Task fMRI AUT (originality) Connectome-based

predictive modeling

Network connectivity strength

predicted verbal creativity in

4 datasets

Liu et al. (2018)a n = 236 Resting-state fMRI

(and genetic data)

TTCT-V (composite) Connectome-based

predictive modeling

Network connectivity strength

predicted verbal creativity in

2 datasets

Chen et al. (2018)a n = 159 Structural MRI (2–3

timepoints)

TTCT-V (composite) Longitudinal VBM ECN and FTN gray matter

maturation predicted future

verbal creativity

Zhu et al. (2017)a n = 282 Resting-state fMRI TTCT-V (composite)

and TTCT-F

(composite)

ICA (mediation) ECN mediated relation between

DN and verbal, figural creativity

Sun et al. (2018)a n = 574 Resting-state fMRI TTCT-V (composite) Temporal variability

of FC

DN between- and within-

network FC variability correlated

with verbal creativity

Bendetowicz

et al. (2018)

n = 29

frontal

patients,

n = 54

controls

Structural MRI

(lesion mapping)

CAT-V and FGAT Voxel-based lesion-

deficit mapping;

disconnection-deficit

mapping; network-

based lesion deficit

MPFC (DMN) lesion disrupted

remote concept generation;

RLPFC (ECN) lesion disrupted

remote concept combination but

not generation

Gao et al. (2017)b n = 22 HCG,

n = 22 LCG

Resting-state fMRI TTCT-F (composite) Voxel-wise whole-

brain FCS; seed-to-

voxel; graph theory

HCG showed greater FCS

across regions of multiple

networks; network efficiency

correlated with figural creativity

score

Kenett et al.

(2018)

n = 416 DTI TTCT-V (composite) Network Control

Theory

Network controllability of DLPFC

(ECN) and other regions

correlated with verbal creativity

score

Li et al. (2017)b n = 22 HCG,

n = 22 LCG

Resting-state fMRI TTCT-F (composite) ICA; Dynamic FC HCG showed more frequent

transitions between brain states

Takeuchi et al.

(2017)

n = 1277 Resting-state fMRI S-A creativity test ReHO; seed-to-

voxel; fALFF

Creativity score in females

correlated with ReHo of MTG

(DMN); RSFC between MPFC

(DMN) and IFG (ECN); and fALFF

in precuneus (DMN), MTG

(DMN), and other regions

CAT-V = Combined Associates Task; DN = default network; DTI = diffusion tensor imaging; ECN = executive control network; fALFF = fractional

amplitude of low frequency fluctuations; FC = functional connectivity; FCS = functional connectivity strength; FGAT = Free Generation of Remote

Associates Task; fMRI = functional magnetic resonance imaging; FTN = fronto-temporal network; HCG = high-creative group; IFG = inferior frontal

gyrus; ICA = independent components analysis; LCG = low-creative group; MPFC = medial prefrontal cortex; MTG = middle temporal gyrus;

RLPFC = rostrolateral prefrontal cortex; TTCT-F = Torrance Test of Creative Thinking - Figural; TTCT-V = Torrance Test of Creative Thinking -

Verbal; ReHo = regional homogeneity; SN = salience network; VBM = voxel-based morphometry.
a Data from the Southwest University Longitudinal Imaging Multimodal (SLIM) Brain Data Repository (http://fcon_1000.projects.nitrc.org/indi/retro/

southwestuni_qiu_index.html).
b Data from the same subset of 180 undergraduates used to form the HCG and LCG.
associated with creative thinking and default network

functioning [39] — found that high Openness was related

to increased time spent in a brain state characterized by

positive correlations among the default, salience, execu-

tive, and dorsal attention networks [40]. Taken together

with dynamic connectivity findings [37��,38�], it appears

creative individuals benefit from an ability to dynamically

shift between different patterns of brain connectivity.

Other studies have assessed variation in structural brain

network connectivity in relation to creative thinking

ability [41��,42,43,44]. One such study [41��] used
www.sciencedirect.com 
network-based lesion-deficit mapping in a patient sample

and found that MPFC lesions within the DN impaired

remote concept generation, pointing to a role for the DN

in spontaneous idea production; conversely, left rostro-

lateral prefrontal lesions within the ECN spared concept

generation ability but impaired concept combination,

consistent with role of ECN in higher-order control

processes. Other recent work using network control the-

ory analysis of white matter tracts has reported a correla-

tion between divergent thinking ability and ‘modal con-

trollability’ in the right DLPFC of the ECN [42],

suggesting that divergent thinking ability is characterized
Current Opinion in Behavioral Sciences 2019, 27:22–30
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Figure 2
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Functional networks predictive of verbal divergent thinking ability identified via connectome-based predictive modeling. Notes. Task-related fMRI

data were acquired from participants (n = 163) engaged in an alternate uses divergent thinking task. (A) Functional networks were defined by

extracting a latent factor of originality ratings, correlating these values with all possible connections (i.e. edges) in a whole-brain network (total

possible edges = 35,778), and thresholding edges ( p < .01) to retain the most significant edges, resulting in a ‘high-creative network’ (224 edges)

and a ‘low-creative’ network (603 edges). (B) Scatterplots depicting correlations between observed creativity scores (x-axis) and model-predicted

creativity score (y-axis) for the high- and low-creative networks. Adapted from [21].
by an ability to ‘drive’ the brain into difficult-to-reach

cognitive states via the right DLPFC.

Notably, recent evidence suggests that correlations

between creativity and structural brain connectivity

vary as a function of sex. One study [43] found correla-

tions between regional white matter volume and diver-

gent thinking across diverse brain regions, but only in

women. Other work [44] has reported decreased global

network connectivity and clustering in women.

Together, these findings highlight the importance of

considering sex differences when assessing individual
Current Opinion in Behavioral Sciences 2019, 27:22–30 
differences in creative thinking and brain network

connectivity.

Summary and future directions
The cognitive neuroscience of creativity has benefited

from recent innovations in network neuroscience meth-

odology. This research is providing an increasingly

sophisticated understanding of the complex mechanics

of the creative brain, mapping neural dynamics to specific

cognitive mechanisms and predicting individual creative

abilities from patterns of brain connectivity. The litera-

ture has identified network dynamics supporting several
www.sciencedirect.com
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Figure 3
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Resting-state between-network variability correlated with figural divergent thinking. Notes. Resting-state fMRI data were acquired from participants

(n = 574) who completed a battery of verbal divergent thinking tasks outside the scanner. The radar plot in the middle displays correlations

between pairs of functional networks whose resting-state signal variability significantly relates to verbal divergent thinking scores. AN = auditory

network; CTCN = cingulo-opercular task control network; DAN = dorsal attention network; DMN = default mode network; FTCN = fronto-parietal task

control network (executive control network); SHN = sensory/somatomotor hand network; SN = salience network; VAN = ventral attention network;

VN = visual network.
cognitive processes relevant to creative thought (Fig-

ure 1), including goal-directed memory retrieval (execu-

tive-default; [9]), prepotent-response inhibition (execu-

tive-default; [14]), and internally-focused attention

(executive-visual; [18]). Connectome prediction methods

have been applied to estimate creative thinking ability

from unique patterns of brain connectivity assessed both

at rest [27�] and during task performance [21], suggesting

that variation in brain-network connectivity provides a

reliable biomarker of creative thinking ability.

Future research should continue to map specific cognitive

processes and individual differences supporting creative
www.sciencedirect.com 
cognition. Network neuroscience methods provide a pow-

erful approach, but activation studies continue to provide

important insights into key cognitive mechanisms,

including dissociating brain regions involved in generat-

ing ‘new’ vs. ‘old’ ideas [45], identifying neural correlates

of remote conceptual combination [15] and expansion

[46], and characterizing spontaneous cognitive processes

related to DN activity and creative thought [47�]. More-

over, research has thus far largely relied on correlational

methods, so it is unclear whether connectivity patterns

are causally related to creative performance. To address

this issue, future research could employ new techniques

in brain stimulation, such as transcranial alternating
Current Opinion in Behavioral Sciences 2019, 27:22–30
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current stimulation, to causally manipulate interactions

between large-scale brain networks. Although brain stim-

ulation has already shown promise in identifying brain

regions supporting creative thinking [48,49], an interest-

ing next step would be to modulate interactions between

these regions, particularly nodes within DN and ECN.

Moreover, future individual differences research could

examine whether connectivity patterns predictive of

domain-general creative thinking (e.g. divergent think-

ing; [50]) extend to predict domain-specific creative per-

formance [51,52], such as improvisation [53–58], poetry

composition [59], visual creativity [5,60], or creative writ-

ing [61,62]. These are only a few potential directions for

neuroscience research in what promises to be an exciting

pursuit for the foreseeable future in mapping the creative

brain.
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45. Benedek M, Schües T, Beaty RE, Jauk E, Koschutnig K, Fink A,
Neubauer AC: To create or to recall original ideas: brain
processes associated with the imagination of novel object
uses. Cortex 2018, 99:93-102.

46. Abraham A, Rutter B, Bantin T, Hermann C: Creative conceptual
expansion: a combined fMRI replication and extension study
to examine individual differences in creativity.
Neuropsychologia 2018 http://dx.doi.org/10.1016/j.
neuropsychologia.2018.05.004.

47.
�

Marron TR, Lerner Y, Berant E, Kinreich S, Shapira-Lichter I,
Hendler T, Faust M: Chain free association, creativity, and the
default mode network. Neuropsychologia 2018 http://dx.doi.org/
10.1016/j.neuropsychologia.2018.03.018.

The default network is often considered a source of creative idea gen-
eration but little evidence actually exists to support this claim. Marron and
colleagues provide such evidence by examining brain regions associated
with chain free association (FA), a relatively unconstrained task involving
spontaneous production of contiguously related concepts. Behavioral
indices of FA correlated with divergent thinking scores and brain activity
during FA, including FA semantic distance and PCC activity during FA
performance, pointing to a potential role of spontaneous episodic or
semantic processes in idea production.

48. Luft CDB, Pereda E, Banissy MJ, Bhattacharya J: Best of both
worlds: promise of combining brain stimulation and brain
connectome. Front Syst Neurosci 2014, 8:132.
Current Opinion in Behavioral Sciences 2019, 27:22–30

http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0130
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0130
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0135
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0135
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0135
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0140
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0140
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0140
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0140
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0145
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0145
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0145
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0145
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0150
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0150
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0150
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0150
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0155
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0155
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0155
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0160
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0160
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0160
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0160
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0165
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0170
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0170
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0170
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0170
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0170
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0175
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0175
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0175
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0180
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0180
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0180
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0180
http://dx.doi.org/10.1093/cercor/bhy010
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0190
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0190
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0190
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0190
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0195
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0195
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0195
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0195
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0200
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0200
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0200
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0200
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0205
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0205
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0205
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0205
http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.001
http://dx.doi.org/10.1016/j.neuropsychologia.2018.01.001
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0215
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0215
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0215
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0215
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0215
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0220
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0220
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0220
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0220
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0225
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0225
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0225
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0225
http://dx.doi.org/10.1016/j.neuropsychologia.2018.05.004
http://dx.doi.org/10.1016/j.neuropsychologia.2018.05.004
http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.018
http://dx.doi.org/10.1016/j.neuropsychologia.2018.03.018
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0240
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0240
http://refhub.elsevier.com/S2352-1546(18)30121-9/sbref0240


30 Creativity
49. Weinberger AB, Green AE, Chrysikou EG: Using transcranial
direct current stimulation to enhance creative cognition:
interactions between task, polarity, and stimulation site. Front
Hum Neurosci 2017, 11:246.

50. Zhu W, Chen Q, Xia L, Beaty RE, Yang W, Tian F, Sun J, Cao G,
Zhang Q, Chen X et al.: Common and distinct brain networks
underlying verbal and visual creativity. Hum Brain Mapp 2017,
38.

51. Boccia M: Where do bright ideas occur in our brain? Meta-
analytic evidence from neuroimaging studies of domain-
specific creativity. Front Psychol 2015, 6:1-12.

52. Shi B, Cao X, Chen Q, Zhuang K, Qiu J: Different brain structures
associated with artistic and scientific creativity: a voxel-based
morphometry study. Sci Rep 2017, 7:42911.

53. Beaty RE: The neuroscience of musical improvisation. 2015,
51:108-117.

54. Bashwiner DM, Wertz CJ, Flores RA, Jung RE: Musical creativity
revealed in brain structure: interplay between motor, default
mode, and limbic networks. Sci Rep 2016, 6:20482.

55. Loui P: Rapid and flexible creativity in musical improvisation:
review and a model. Ann N Y Acad Sci 2018 http://dx.doi.org/
10.1111/nyas.13628.

56. Pinho AL, de Manzano O, Fransson P, Eriksson H, Ullen F:
Connecting to create: expertise in musical improvisation is
associated with increased functional connectivity between
premotor and prefrontal areas. J Neurosci 2014, 34:6156-6163.
Current Opinion in Behavioral Sciences 2019, 27:22–30 
57. Pinho AL, Ullén F, Castelo-Branco M, Fransson P, De Manzano Ö:
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