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Glossary

Blood-oxygen-level-dependent (BOLD) signal: measure of metabolic activity in

the brain based on the difference between oxyhemoglobin and deoxyhemo-

globin levels arising from changes in local blood flow.

Central-executive network (CEN): brain network responsible for high-level

cognitive functions, notably the control of attention and working memory.

Default-mode network (DMN): large-scale network of brain areas that form an

integrated system for self-related cognitive activity, including autobiographi-

cal, self-monitoring and social functions.

Diffusion-based tractography: class of noninvasive magnetic resonance

imaging techniques that trace fiber bundles (white matter tracts) in the human

brain in vivo based on properties of water molecule diffusion in the local tissue

microstructure.

Dynamic causal modeling: statistical analysis technique based on bilinear

dynamic models for making inferences about the effects of experimental

manipulations on inter-regional interactions in latent neuronal signals.

Functional interdependence: statistical inter-relation of variables representing

temporal changes in different network nodes.

Granger causality analysis (GCA): statistical method that, when applied to the

brain, measures the degree of predictability of temporal changes in one brain

area that can be attributed to those in another area.

Independent component analysis (ICA): computational technique that sepa-

rates a multivariate signal into additive components based on the assumption

that the components arise from statistically independent non-Gaussian

sources.

Intrinsic connectivity network (ICN): large-scale network of interdependent

brain areas observed at rest.

Large-scale: term referring to neural systems that are distributed across the

entire extent of the brain.

Local field potential (LFP): electric potential generated in a volume of neural

tissue by a local population of neurons. LFPs result from the flow of current in

the extracellular space generated by electromotive forces operating across the

cell membranes of neurons, principally at synapses.

Functional magnetic resonance imaging (fMRI): noninvasive neuroimaging

method that measures BOLD signals in the brain in vivo.

Network: physical system that can be represented by a graph consisting of

nodes and edges.

Network edge: component of networks that links nodes.

Network node: component of networks linked by edges.
An understanding of how the human brain produces
cognition ultimately depends on knowledge of large-
scale brain organization. Although it has long been
assumed that cognitive functions are attributable to
the isolated operations of single brain areas, we demon-
strate that the weight of evidence has now shifted in
support of the view that cognition results from the
dynamic interactions of distributed brain areas operat-
ing in large-scale networks. We review current research
on structural and functional brain organization, and
argue that the emerging science of large-scale brain
networks provides a coherent framework for under-
standing of cognition. Critically, this framework allows
a principled exploration of how cognitive functions
emerge from, and are constrained by, core structural
and functional networks of the brain.

Large-scale brain networks and cognition
Much of our current knowledge of cognitive brain function
has come from themodular paradigm, in which brain areas
are postulated to act as independent processors for specific
complex cognitive functions [1,2]. Accumulating evidence
suggests that this paradigm has serious limitations and
might in fact be misleading [3]. Even the functions of
primary sensory areas of the cerebral cortex, once thought
to be pinnacles of modularity, are being redefined by recent
evidence of cross-modal interactions [4]. A new paradigm is
emerging in cognitive neuroscience that moves beyond the
simplistic mapping of cognitive constructs onto individual
brain areas and emphasizes instead the conjoint function
of brain areas working together as large-scale networks.
The historical roots of this new large-scale network para-
digm can be traced to Wernicke [5], Pavlov [6] and Luria
[7]. More recently, important contributions have been
made by a number of researchers, including Freeman
[8], Edelman [9], Mountcastle [10], Goldman-Rakic [11],
Mesulam [12], Bressler [13], McIntosh [14], Menon [15],
Fuster [16] and Sporns [17].

This review describes recent developments in the emer-
ging science of large-scale brain networks that are leading
to a new understanding of the neural underpinnings of
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cognition by revealing how cognitive functions arise from
interactions within and between distributed brain sys-
tems. It focuses on technological and methodological
advances in the study of structural and functional brain
connectivity that are inspiring new conceptualizations of
large-scale brain networks. Underlying this focus is the
view that structure–function relations are critical for gain-
ing a deeper insight into the neural basis of cognition. We
thus emphasize the structural and functional architectures
of large-scale brain networks (Box 1). For this purpose, we
Phase synchrony: tendency for two time series to exhibit temporal locking, or a

constant relative phase relation, usually in a narrow frequency range.
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Box 1. The concept of brain networks

Brain networks can be defined based on structural connectivity or

functional interdependence. The structural network organization of

the brain is based on the anatomical linkage of its neurons. Neurons

are connected locally by synapses from short axons, dendrites and

gap junctions. Although neuronal populations throughout the brain

have a variety of different internal circuitry configurations, they can

be represented as network nodes if they have a uniquely identifiable

local structural organization, a large-scale structural connectivity

pattern or a local functional activity pattern that allows them to be

distinguished from their neighbors.

Some (projection) neurons in the brain have long axons that

synapse at a distance from the cell body. Long axon pathways that

project from one neuronal population to another can be represented

as network edges. If the pathway between two populations (A and B)

consists of axons only from A to B or only from B to A, then the edge

can be considered to be directed. If the pathway consists of axons in

both directions, then the edge can be considered to be bidirectional.

If the method used to identify edges in the brain does not establish

directionality, the edges can be treated as being undirected.

The functional interdependence of brain network nodes refers to

joint activity in different brain structures that is co-dependent under

variation of a functional or behavioral parameter. Most methods

yield non-zero values of functional interdependence in all cases, so

true functional interdependence must depend on values that are

significantly different from zero or significantly different between

cognitive conditions.

Review Trends in Cognitive Sciences Vol.14 No.6
review the use of basic terminology from network theory
(Box 2) [18], which provides a standardized framework for
comparison and contrast of current concepts of large-scale
brain networks emerging from the fields of neuroanatomy,
functional neuroimaging and cognitive electrophysiology.

Our review begins with structural architectures of
large-scale brain networks. It details the ways in which
structural nodes and edges are defined, and discusses the
inference of function from structure. We then move on to
large-scale functional brain network architectures, consid-
eringmultiple ways of defining functional nodes and edges,
and contrasting them with related structural measures.
We discuss recent findings on the measurement of func-
tional brain networks, focusing in particular on intrinsic
core networks and their relation to structural networks.
We further discuss the role of functional brain networks in
psychopathology.We conclude that the large-scale network
Box 2. Graphs and networks

A graph is a mathematical entity consisting of a collection of nodes

(vertices) and a collection of edges that connect pairs of nodes.

Graphs are used to model pairwise relations between the nodes. A

graph can be either directed, in which case the edges point from one

node to another, or undirected, in which case the edges have no

directionality. If an edge points in both directions between two

nodes, it is bidirectional. In a directed graph, the node from which

the edge points is called the initial node or tail, and the node to

which it points is called the terminal node or head. A graph can also

be weighted, in which case a numeric value is associated with every

edge in the graph, or unweighted, in which case the edges are not

distinguished by numeric value. A subgraph of a graph G is a graph

for which the set of nodes is a subset of the set of nodes for G and

the set of edges is a subset of the set of edges for G.

A network is a physical system with graph-like properties whereby

the properties of the network correspond to the properties of the

graph on which it is based. Networks are often characterized by their

topology, which is the arrangement or configuration of the network

elements. A subnetwork corresponds to a subgraph.
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framework allows a more systematic examination of how
cognitive functions emerge from, and are constrained by,
core structural and functional networks of the brain.
Finally, we suggest some directions in which we expect
research in this field to proceed in the future.

Large-scale structural brain networks
The neuroanatomical structure of large-scale brain net-
works provides a skeleton of connected brain areas that
facilitates signaling along preferred pathways in the ser-
vice of specific cognitive functions. It is important to
identify the brain areas that constitute structural network
nodes and the connecting pathways that serve as struc-
tural network edges to know which configurations of inter-
acting areas are possible. In the past, large-scale structural
brain networks were often schematized by two-dimen-
sional wiring diagrams, with brain areas connected by
lines or arrows representing pathways. Currently, more
sophisticated network visualization and analysis schemes
are being developed and used [19]. We focus here first on
the principal methods used to define structural nodes and
edges in the brain. We then consider some possible func-
tional consequences of the structural organization of large-
scale brain networks.

Nodes

The nodes of large-scale structural networks are typically
considered to be brain areas defined by: (i) cytoarchitec-
tonics; (ii) local circuit connectivity; (iii) output projection
target commonality; and (iv) input projection source com-
monality. A brain area can be described as a subnetwork of
a large-scale network; this subnetwork consists of excit-
atory and inhibitory neuronal populations (nodes) and
connecting pathways (edges). Despite the complex internal
structure of brain areas, it is often convenient, particularly
in network modeling research, to treat them as unitary
neural masses that serve as spatially undifferentiated
(lumped) nodes in large-scale networks. The definition of
nodes is undergoing progressive refinement as new
methods are developed and understanding of structure–

function relations in the brain evolves (see below).
Techniques used in recent years to determine structural

nodes from neuroanatomical data include: (i) anatomical
parcellation of the cerebral cortex using the Brodmann
atlas; (ii) parcellation in standardized Montreal Neurologi-
cal Institute (MNI) space using macroscopic landmarks in
structural magnetic resonance imaging (sMRI) data [20];
(iii) subject-specific automated cortical parcellation based
on gyral folding patterns [21]; (iv) quantitative cytoarchi-
tectonic maps [22]; and (v) neurochemical maps showing
neurotransmitter profiles [23] (Figure 1). Diverse tradeoffs
arise in theuse of these techniques, amajor onebeing that of
anatomical specificity versus extent of coverage across the
brain. This problem is particularly acute for the cerebral
cortex because the borders ofmost cortical regions cannot be
reliably detected using macroscopic features from sMRI.
The choice of spatial scale for nodal parcellation has import-
ant consequences for the determination of network connec-
tivity [24]. Recent quantitative cytoarchitecture mapping
techniques [22] yield a more fine-grained parcellation and
refined set of nodes than themore classical, but still popular,



Figure 1. Identification of large-scale structural network nodes in the human brain by four methods currently in use. (a) Automated parcellation of a single subject’s

structural MR image into nodes based on the geometry of large sulcal landmarks. (b) High-resolution parcellation with arbitrary granularity. (Reproduced with permission

from [35].) (c) Classical Brodmann atlas based on cytoarchitectonic features. (d) The Jülich–Düsseldorf cytoarchitectonic probabilistic brain atlas, based on observer-

independent mapping of cortical areas in ten post-mortem brains. (Not all brain areas are currently covered in this scheme.) (Reproduced with permission from [160].)
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Brodmannmapping scheme. Although newermethods offer
a tighter link with the functional architecture of the brain,
coverage currently exists for only a small set of cortical
regions [25] and a wide swath of human prefrontal and
temporal cortices have not yet been adequately mapped.

Most anatomical parcellation studies have focused on
the cerebral cortex. Less attention has been paid to sub-
cortical structures such as the basal ganglia and the
thalamus, which have only been demarcated at a coarse
level using sMRI. Brainstem systems mediating motiv-
ation, autonomic function and arousal have been poorly
studied because they are notoriously difficult to identify
using in vivo techniques. Nonetheless, it is important to
identify these structures because they significantly influ-
ence cortical signaling and thus affect cognitive function.
The demarcation of anatomical nodes by divergence and
convergence patterns of structural connectivity is a recent
technique that offers promise. Used to distinguish supple-
mentary and pre-supplementary motor areas in the cortex
[26], the technique has also been effective in discriminating
individual thalamic nuclei [27].

Edges

The edges connecting brain areas in large-scale structural
networks are long-range axonal-fiber (white matter) path-
ways. Network edges are directed because axonal fiber
pathways have directionality from the somata to the
synapses, and can be bidirectional when fiber pathways
279



Figure 2. Identification of large-scale structural network edges in the human brain. Edges linking structural nodes were defined using diffusion tensor imaging. Left:

individual fiber tracts. Top row, right (a–c): tract reconstruction and clustering showing three different orientations. Bottom row, right (d–f): relation to cortical nodes,

shown from the same three orientations. (Reproduced with permission from [161].)
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run in both directions between brain areas. Each brain
area has a unique connection set of other areas with which
it is interconnected [28,29]. Network edges have variable
weights based on the number and size of axons in the
pathways, and the number and strengths of functioning
synapses at the axon terminals.

Three main approaches are currently used to trace
axonal fiber pathways, and thus determine structural net-
work edges. The first is autoradiographic tracing in exper-
imental animals, historically the mainstay of neural
tractography. In the macaque monkey, this technique
has provided a rudimentary map of anatomical links be-
tween major cortical areas [30] and more recently has
successfully detailed rostro–caudal and dorsal–ventral
connectivity gradients between major prefrontal and par-
ietal cortical areas [31]. It is difficult, however, to extrap-
olate from macaque connectional neuroanatomy to that of
the human brain because the degree of pathway homology
between macaque and human brains is not well under-
stood. Methods using postmortem human brains to corro-
borate pathways identified in the macaque have yielded
only limited knowledge about human brain connectivity
because they are not consistently successful, are labor
intensive and are often used to study only a few brain
regions at a time [32].

The second approach uses diffusion-based magnetic
resonance imaging methods, such as diffusion tensor
imaging (DTI) and diffusion spectrum imaging (DSI), to
determine major fiber tracts of the human brain in vivo by
identifying the density of connections between brain
areas (Figure 2). Good convergence between diffusion-
based imaging and autoradiographic results has been
reported [33], but the former has its own unique set of
benefits and drawbacks. It has the advantage of being
able to identify tracts in single human subjects, allowing
replication and validation. It can also help to differentiate
monosynaptic from polysynaptic connections, refine con-
vergent and divergent projection zones, and better delin-
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eate and segregate anatomical areas [34]. However, it
suffers from not being able to delineate feedforward and
feedback connections between brain areas. Diffusion-
based tractography of the entire human brain is still in
its infancy, but rapidly evolving techniques are providing
reliable estimates of the anatomical connectivity of sev-
eral hundred cortical nodes [19,33,35]. With additional
anatomical constraints on ‘seeds’ and ‘targets’ in diffu-
sion-based tractography, it is increasingly possible to
make closer links between projection zones and cytoarch-
itectonic maps [36] (Figure 3).

The third approach to mapping of network edges uses
anatomical features such as local cortical thickness and
volume to measure anatomical connectivity. In this
approach, which has evolved during the same recent time
period as DTI technology, interregional covariation in
cortical thickness and volume across subjects is used to
estimate connectivity [37,38]. Edges thus identified might
not actually reflect axonal pathways and caution is
required in interpreting the results. Nevertheless, net-
works identified using this approach have revealed stable
graph-theoretic properties [39,40].

Recent studies have combined both node and edge
detection to identify structural networks, either across
the whole brain or within specific brain systems. At the
whole-brain level, network nodes are determined by one of
the parcellation methods described above, and then net-
work edges are determined by DTI [41] or DSI [19]. If,
however, structural network nodes are inferred from DTI
or DSI patterns of convergence and divergence, nodes and
edges cannot be independently identified. Within specific
functional systems, such as for language or working mem-
ory, the nodes are constrained to lie within the system and
then the edges are identified by diffusion-based tractogra-
phy [42,43]. The use of cytoarchitectonic boundaries to
define the nodes allows aspects of brain connectivity that
are more closely linked to the underlying neuronal organ-
ization to be uncovered in parallel [44].



Figure 3. Distinct structural connectivity of cytoarchitectonically defined PGa and

PGp regions of the human angular gyrus. (a) DTI tractography and density of fibers

between the PGa and PGp and hippocampus. PGp shows greater structural

connectivity with hippocampus than PGa does (**P < 0.01). (b) DTI tractography

and density of fibers between PGa and PGp and the caudate nucleus. (Reproduced

with permission from [44].)
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Inferring function from structural networks

Large-scale structural networks provide an anatomical
frame within which functional interactions take place
[28,45]. At a minimum, knowledge of which brain areas
are connected is necessary to know which functional inter-
actions are possible. Beyond that, the patterning of struc-
tural network connectivity indicates which types of
interaction are possible. Knowing that a cortical network
has a small-world structure [46], for example, informs us of
the expected functional interactions (many short-range
and fewer long-range interactions). Knowing the hierarch-
ical structural organization of sensory cortical networks
can facilitate inferences about the functional activity flow
patterns following sensory stimulation [47]. Knowing cer-
tain structural network features, such as node clustering
or path length, divergence and convergence, provides
important clues about the functional segregation and
integration of network interactions [48]. Finally, knowing
the differential transmission delays on different network
edges can be important for predicting the dynamic pattern-
ing of network interactions.

A productive line of investigation into this question
considers the repertoire of functional states that can
possibly be generated by a given structural network archi-
tecture. Research on this issue suggests that brain net-
works have evolved to maximize the number and diversity
of functional interaction patterns (functional motifs), while
minimizing the number of structural connectivity patterns
(structural motifs) [39].

With continuing improvement in methods for tracking,
segmenting and classifying fiber tracts in the brain, further
insights into the dependence of large-scale network func-
tion on network structure can be expected. However, a
comprehensive understanding of network function will not
necessarily follow from knowledge of large-scale structural
networks. Large-scale functional networks, the topic of the
next section, must be studied in their own right.

Large-scale functional brain networks
The primate brain has evolved to provide survival value to
primate species by allowing individual species members to
behave in ways that accommodate a wide variety of
environmental contingencies, performing different beha-
viors under different sets of conditions. At each moment, a
specific set of conditions must be analyzed by the percep-
tual apparatus of the brain and sets of percepts must be
combined with learned concepts to create a ‘solution’ to the
immediate problem of understanding the environment and
acting appropriately. It is reasonable to assume that col-
lections of interconnected brain areas act in concert to
produce these solutions, as well as corresponding beha-
viors, and that they interact dynamically to achieve con-
certed action [49]. A large-scale functional network can
therefore be defined as a collection of interconnected brain
areas that interact to perform circumscribed functions.

Structural networks provide a complex architecture
that promotes the dynamic interactions between nodes
that give rise to functional networks. The connectivity
patterns of structural networks, which vary with species
[50], determine the functional networks that can emerge.
Some functional networks, such as for language, depend on
species-specific structural specializations [51], whereas
others are common across species. The topological form
of functional networks (which nodes are connected to which
other nodes) changes throughout an individual’s lifespan
and is uniquely shaped by maturational and learning
processes within the large-scale neuroanatomical connec-
tivity matrix for each individual [52].

Large-scale functional networks in the brain exert coor-
dinated effects on effector organs, subcortical brain struc-
tures and distributed cortical areas during a host of
different cognitive functions. Component brain areas of
large-scale functional networks perform different roles,
some acting as controllers that direct the engagement of
other areas [53] and others contributing specific sensory or
conceptual content to network operations. For instance,
coordinated prefrontal and posterior parietal control areas
channel the flow of activity among sensory andmotor areas
in preparation for, and during, perceptuomotor processing
[54–57].

Nodes

The characterization of functional networks in the brain
requires identification of functional nodes. However, there
is no commonly agreed definition of what constitutes a
functional node in the brain. Historically, functional brain
network nodes have been defined by inferences concerning
the effects of brain lesions on cognitive function: when
damage to a particular brain area impaired a cognitive
function, that area was said to be a node in a network
subserving that function.

Since the advent of advanced functional electrophysio-
logical and neuroimaging methods, additional method-
ologies to define functional network nodes have become
281
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available. A network node can be a circumscribed brain
region displaying elevated metabolism in positron emis-
sion tomography (PET) recordings, elevated blood per-
fusion in functional magnetic resonance imaging (fMRI)
recordings, or synchronized oscillatory activity in local field
potential (LFP) recordings. Participation of a brain area in
a large-scale functional network is commonly inferred from
its activation or deactivation in relation to cognitive func-
tion. A group of brain areas jointly and uniquely activated
or deactivated during cognitive function with respect to a
baseline state can represent the nodes of a large-scale
network for that function.

A major challenge is to determine how functional net-
work nodes defined by different recording modalities are
related, and how they relate to structural network nodes.
From the network perspective, cognitive functions are
carried out in real time by the operations of functional
networks comprised of unique sets of interacting network
nodes. For a brain area to qualify as a functional network
node, it must be demonstrated that, in combination with a
particular set of other nodes, it is engaged in a particular
class of cognitive functions. Although it is not yet known
how the various definitions of large-scale functional net-
work nodes derived from different recordingmodalities are
related, a possible scenario is that the elevated excitability
of neurons within an area leads to elevated metabolic
activity, which in turn causes an increase in local blood
oxygen availability. The elevated excitability could also
cause increased interactions between neurons within the
area. Interactions between different populations can pro-
duce oscillatory activity and can have important functional
consequences if, for example, the interactions lead to
increased sensitivity of neurons within the area to the
inputs that they receive.

Much of the work in the field of functional neuroimaging
uses the fMRI blood-oxygen-level-dependent (BOLD) sig-
nal to identify the nodes of large-scale functional networks
by relating the joint activation of brain areas to different
cognitive functions. fMRI BOLD activation has revealed
network nodes that are involved in such cognitive functions
as attention [58], working memory [59], language [60],
emotion [61], motor control [62] and time perception
Figure 4. A large-scale sensorimotor network in the monkey cerebral cortex. Coher

distributed neuronal populations in somatosensory and motor regions of the macaque

the observation of highly synchronized population oscillatory activity in the b freque

engaged in a visual discrimination task. (Reproduced with permission from [75].)

282
[63]. By contrast, nodes of a default-mode network
(DMN), which are involved in self-monitoring functions,
have been discovered by examining the joint deactivation
of brain areas in relation to different goal-directed tasks
[64–67].

Edges

The identification of functional network edges comes from
different forms of functional interdependence (or func-
tional connectivity) analysis, which assesses functional
interactions among network nodes. The identification of
network edges, like that of network nodes, is highly de-
pendent on the monitoring methodology. Functional inter-
dependence analysis can identify network edges from time
series data in the time (e.g. cross-correlation function) or
frequency (e.g., spectral coherence or phase synchrony
measures) domain. In either domain, the analysis can
use a symmetric measure, in which case significant inter-
dependences are represented as undirected edges, or an
asymmetric measure, in which case they are represented
as directed edges [17]. Methods using directional measures
include Granger causality analysis [57,68–72] and
dynamic causal modeling [73,74].

Functional interdependences must be statistically sig-
nificant for them to represent the edges of large-scale
functional networks. Determination of thresholds for sig-
nificance testing of network edges is often fraught with
difficulty, and the particular method used for threshold
determination can have an appreciable impact on the
resulting large-scale network. Certain graph-theoretic
measures, however, do not suffer from this problem
because they take into account the full weight structure
of the network [18].

Functional interdependence analysis has revealed
large-scale functional network edges when applied to
LFP [75–78] (Figure 4), combined LFP and multi-unit
spiking [79,80], electrocorticographic (ECoG) [81–83], elec-
troencephalographic (EEG) [84,85], magnetoencephalo-
graphic (MEG) [86] and fMRI BOLD [87,88] time series.
As with functional network nodes, it is necessary to under-
stand how large-scale functional network edges defined by
different recording modalities are related. Fluctuations in
ence (left) and Granger causality (right) graphs characterize the interactions of

monkey cerebral cortex. The determination of network organization was based on

ncy range (14–30 Hz) as the monkey maintained pressure on a hand lever while
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neuronal population activity at different time scales can
control the time-dependent variation of engagement and
coordination of areas in large-scale functional networks
[52].

Network edges are possibly best represented by the
correlation of time series fluctuations at different time
scales, reflecting different functional network properties.
The correlation of slow fluctuations at rest in fMRI BOLD
signals possibly reflects slow interactions necessary to
maintain the structural and functional integrity of net-
works [89], whereas the correlation of fast fluctuations
could reflect fast dynamic coupling required for infor-
mation exchange within the network [52].

On the basis of the local circuit organization of excit-
atory and inhibitory neuronal populations in the cortex
and the ubiquitous reciprocal nature of interregional cor-
tical transmission, it has been hypothesized that fast
dynamic coupling is based on long-range phase synchrony
of oscillatory neuronal population activity [90,91]. Phase
synchrony has been found between extrastriate areas of
the visual cortex during visual short-term memory main-
tenance [92], frontal, occipital and hippocampal areas
during visual object processing [82], frontal, temporal,
parietal and occipital areas during multisensory proces-
sing [93], and different widespread sets of cortical areas
during different attention tasks [94]. Although these
results suggest that long-range phase synchrony can serve
as a dynamic mechanism underlying functional inter-
actions in the brain, a systematic framework for the study
of large-scale brain networks based on phase synchrony
has not yet emerged, chiefly because the requisite electro-
physiological recordings are typically restricted in terms of
the number of brain areas that can be simultaneously
sampled.

Functional interdependence has been observed across a
range of time scales from milliseconds [80,95] to minutes
[96,97]. Recent evidence suggests that slow intracranial
cortical potentials are related to the fMRI BOLD signal
[98]. It is possible that functional networks are organized
according to a hierarchy of temporal scales, with structural
edges constraining slow functional edges, which in turn
constrain progressively faster network edges. Studies in
bothmonkeys [99] and humans [100] support the existence
of hierarchical functional organization across time scales.

Intrinsic functional brain networks

Functional interdependence analysis has often been used
to investigate interactions between brain areas during
task performance. Although task-based analyses have
enhanced our understanding of dynamic context-depend-
ent interactions, they often have not contributed to a
principled understanding of functional brain networks.
By focusing on task-related interactions between specific
brain areas, they have tended to ignore the anatomical
connectivity and physiological processes that underlie
these interactions. We suggest that characterization of
the intrinsic structural and functional connectivity of
large-scale brain networks is necessary for a more sys-
tematic understanding of how they engender cognition.

In contrast to functional interdependence analyses of
task-induced changes in interactions, intrinsic interdepen-
dence analysis focuses on large-scale brain organization
independent of task processing demands [15]. Intrinsic
interdependence analysis of fMRI data acquired from sub-
jects at rest and unbiased by task demands has been used
to identify intrinsic connectivity networks (ICNs) in the
brain [101]. Characterization of large-scale functional net-
works in the resting state has the advantage of avoiding
idiosyncrasies that might be present in certain cognitive
tasks [102–104]. ICNs identified in the resting brain in-
clude networks that are also active during specific cogni-
tive operations, suggesting that the human brain is
intrinsically organized into distinct functional networks
[105–108].

One key method for identifying ICNs in resting-state
fMRI BOLD data is independent component analysis (ICA)
[105], which has been used to identify ICNs involved in
executive control, episodic memory, autobiographical
memory, self-related processing and detection of salient
events. ICA has revealed a sensorimotor ICN anchored in
bilateral somatosensory and motor cortices, a visuospatial
attention network anchored in intra-parietal sulci and
frontal eye fields, a higher-order visual network anchored
in lateral occipital and inferior temporal cortices, and a
lower-order visual network [105,107]. This technique has
allowed intrinsic (Figure 5), as well as task-related
(Figure 6), fMRI activation patterns to be used for identi-
fication of distinct functionally coupled systems, including
a central-executive network (CEN) anchored in dorsolat-
eral prefrontal cortex (DLPFC) and posterior parietal cor-
tex (PPC), and a salience network anchored in anterior
insula (AI) and anterior cingulate cortex (ACC) [107].

A second major method of ICN identification is seed-
based functional interdependence analysis [15,109]. Like
ICA, this technique has been used to examine ICNs associ-
ated with specific cognitive processes such as visual orient-
ing attention [106,110], memory [103] and emotion [111].
First, a seed region associated with a cognitive function is
identified. Then, a map is constructed of brain voxels
showing significant functional connectivity with the seed
region. This approach has demonstrated that similar net-
works to those engaged during cognitive task performance
are identifiable at rest, including dorsal and ventral atten-
tion systems [109] and hippocampal memory systems
[112]. It has also revealed distinct functional circuits
within adjacent brain regions: functional connectivity
maps of the human basolateral and centromedial amyg-
dala [113], for example, reproduce connectivity patterns
observed using animal cyto-, myelo- and chemoarchitec-
tural methods with remarkable fidelity [111].

Graph-theoretic studies of resting-state fMRI functional
connectivity results [114,115] have suggested that human
large-scale functional brain networks are usefully
described as small-world [18,116]. Other graph-theoretic
metrics such as hierarchy have been useful in characteriz-
ing subnetwork topological properties [117], but a consist-
ent view of hierarchical organization in large-scale
functional networks has yet to emerge.

Core functional brain networks

A formal characterization of core brain networks, anato-
mically distinct large-scale brain systems with distinct
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Figure 5. Two core brain networks identified using intrinsic physiological coupling in resting-state fMRI data. The salience network (shown in red) is important for

monitoring the salience of external inputs and internal brain events, and the central-executive network (shown in blue) is engaged in higher-order cognitive and attentional

control. The salience network is anchored in anterior insular (AI) and dorsal anterior cingulate cortices (dACC), and features extensive connectivity with subcortical and

limbic structures involved in reward and motivation. The central-executive network links the dorsolateral prefrontal and posterior parietal cortices, and has subcortical

coupling that is distinct from that of the salience network. (Reproduced with permission from [107].)
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cognitive functions, was first reported by Mesulam [12]. In
his view, the human brain contains at least five major core
functional networks: (i) a spatial attention network
anchored in posterior parietal cortex and frontal eye fields;
Figure 6. Three major functional networks in the human brain identified using conver

salience networks, and deactivation patterns in the default-mode network during an

decomposed into distinct subpatterns. (a) Analysis with the general linear model reveale

PPC (green circles), and deactivations (right) in the ventromedial (VM)PFC and PCC. (b) I

networks. From left to right: salience network (rAI and ACC), central-executive network (

permission from [129].)
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(ii) a language network anchored inWernicke’s and Broca’s
areas; (iii) an explicit memory network anchored in the
hippocampal–entorhinal complex and inferior parietal cor-
tex; (iv) a face-object recognition network anchored in
ging methodologies. Task-related activation patterns in the central-executive and

auditory event segmentation task. Activation and deactivation patterns can be

d regional activations (left) in the right AI and ACC (blue circles) and the DLPFC and

ndependent component analysis provided converging evidence of spatially distinct

rDLPFC and rPPC), and default-mode network (VMPFC and PCC). (Reproduced with
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midtemporal and temporopolar cortices; and (v) a working
memory-executive function network anchored in prefron-
tal and inferior parietal cortices. The nodes of these core
networks have been inferred from fMRI activations during
tasks that manipulate one or more of these cognitive
functions. A full characterization of core functional brain
networks, however, will require additional studies to vali-
date the nodes of these networks by other criteria, to
measure their edges, and to determine whether other core
networks exist.

Major functional brain networks, and their composite
subnetworks, show close correspondence in independent
analyses of resting and task-related connectivity patterns
[118], suggesting that functional networks coupled at rest
are also systematically engaged during cognition. The
important discovery that some core brain networks can
be identified by the characterization of ICNs in subjects at
rest has contributed to a more unified perspective on
central neurocognitive operations. A prime candidate for
consideration as a core brain network is the DMN, an ICN
that shows extensive deactivation during cognitively
demanding tasks [119] and increased activity during
high-level social cognitive tasks [120]. Numerous studies
have revealed activation and deactivation of various nodes
of the DMN: the PCC during tasks involving autobiogra-
phical memory and self-referential processes [121], the
medial PFC in social cognitive processes related to self
and others [122], the MTL in episodic memory [123], and
the angular gyrus in semantic processing [124]. These
studies suggest that the functions of the DMN nodes are
very different. However, when considered as a core brain
network, the DMN is seen to collectively comprise an
integrated system for autobiographical, self-monitoring
and social cognitive functions [125], even though a unique
Figure 7. Multi-network switching initiated by the salience network. It is hypothesized th

and default-mode networks, and mediates between attention to endogenous and exogen

detects salient events and initiates appropriate control signals to regulate behavior via th

the salience network include the AI and ACC; the default-mode network includes the VM

[129] and [130].)
task-based function cannot be assigned to each of its nodes.
The concept of an integral DMN function is supported by
observations that dynamic suppression of the entire net-
work is necessary for accurate behavioral performance on
cognitively demanding tasks [126,127].

Another candidate core brain network is the aforemen-
tioned salience network, comprised of cortical areas AI and
ACC and subcortical areas including the amygdala, sub-
stantia nigra or ventral tegmental area and thalamus. It
has been suggested that the salience network is involved in
the orientation of attention to the most homeostatically
relevant (salient) of ongoing intrapersonal and extraper-
sonal events [107,128] (Figure 5). In this light, a recent
study examining the directional influences exerted by
specific nodes in the salience network on other brain
regions suggested that the AI plays a causal role in switch-
ing between the CEN and DMN [129], two networks that
undergo competitive interactions across task paradigms
and stimulus modalities (Figure 7) and are thought to
mediate attention to the external and internal worlds,
respectively.

A crucial open question concerning core brain networks
is whether a given network can be said to support a specific
cognitive function. The answer to this question for any
network will depend on a deeper understanding of its
input–output relations, its temporal dynamics and the
ways in which it interacts with other networks. We use
the salience network to illustrate this point. As described
above, it has been suggested that this network mediates
attention to the external and internal worlds [130]. To
determine whether this network indeed specifically per-
forms this function will require testing and validation of a
sequence of putative network mechanisms that includes:
(i) bottom-up detection of salient events; (ii) switching
at the salience network initiates dynamic switching between the central-executive

ous events. In this model, sensory and limbic inputs are processed by the AI, which

e ACC and homeostatic state via the mid and posterior insular cortex. Key nodes of

PFC and PCC; the central-executive network includes the DLPFC and PPC. (Based on
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Box 3. Critical questions about cognition from the network

perspective

� How does cognitive function emerge from large-scale brain

networks?

� What mechanisms underlie the dynamic engagement and disen-

gagement of brain areas responsible for the formation and

dissolution of large-scale functional networks?

� How do different large-scale functional networks cooperate,

compete and coordinate their activity during complex cognitive

behavior?

� How does functional interdependence based on the fMRI BOLD

signal relate to that based on synchronized oscillatory activity in

neuronal population activity measured in LFP recording?

� Is knowledge constructed dynamically by large-scale functional

networks?
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between other large-scale networks to facilitate access to
attention and working memory resources when a salient
event occurs; (iii) interaction of the anterior and posterior
insula to modulate autonomic reactivity to salient stimuli;
and (iv) strong functional coupling with the ACC to facili-
tate rapid access to the motor system. Such validation
would help to establish cognitive sequelae associated with
the salience network and provide novel insights into its
role in mediating attention to the external and internal
worlds.

Functional brain networks and psychopathology

The systematic exploration of large-scale functional brain
networks is yielding not only parsimonious accounts of
normal cognitive processes, but also novel insights into
psychiatric and neurological disorders [131–133].
Abnormalities in intrinsic functional connectivity have
been identified within the DMN in Alzheimer’s disease
[134,135] and inmajor depression [131], albeit in different
network nodes. Abnormalities have been observed in the
phase synchrony of oscillatory neuronal population
activity [136] in relation to Alzheimer’s disease [137],
schizophrenia [138–140], autism [141–143], the manic
phase of bipolar disorder [144] and Parkinson’s disease
[145]. Thus, impairment of functional network inter-
actions might be common in psychiatric and neurological
disorders, and observable by functional interdependence
analysis of both oscillatory neuronal population and fMRI
activity.

A particularly striking example of this new view of
psychopathology comes from the finding, discussed above,
that the AI is a critical node for initiation of network
switching. This key insight reveals the potential for pro-
found deficits in cognitive functioning should AI integrity
or connectivity be compromised. AI hyperactivity has been
implicated in anxiety disorders, suggesting that salience
network hyperactivity can be pathological [146]. Individ-
uals scoring high on the trait neuroticism, the tendency to
experience negative emotional states, demonstrate greater
AI activation during decision-making even when the out-
come of the decision is certain [147]. It is possible that an
appropriate level of AI activity is necessary to provide an
alerting signal that initiates brain responses to salient
stimuli. If so, pathology could result from AI hyperactivity,
as in anxiety, or hypoactivity, as might be the case in
autism [148]. Similarly, Uddin and Menon suggested that
a large-scale brain network description can provide a
parsimonious account of the recent neuroimaging litera-
ture on autism and that theAI is a key node in coordinating
brain network interactions owing to its unique anatomy,
function and connectivity [149]. Characterization of brain
networks associated with this structure has helped to
identify an important but neglected area of research in
autism. A systematic investigation of the salience network
could be important for better differentiation and charac-
terization of neurodegenerative disorders such as Alzhei-
mer’s disease and different forms of frontotemporal
dementia [133].

Finally, the central role played by large-scale net-
works in cognitive function and dysfunction is well illus-
trated by recent studies demonstrating that face
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perception is not the property of a single face-processing
area in fusiform cortex, but rather of an extended net-
work of visual, limbic and prefrontal cortical regions
[150]. Impaired face perception in congenital prosopag-
nosia results from the degraded structural integrity of
the inferior longitudinal fasciculus and the inferior
fronto-occipital fasciculus, two fiber tracts that connect
the fusiform gyrus with other face-processing network
areas in anterior temporal and frontal cortices [151].
The fMRI response to faces in congenital prosopagnosic
individuals is normal in the fusiform cortex, but not in
the extended regions [152]. A decline in face perception
with normal aging is also related to reduced structural
integrity of the inferior fronto-occipital fasciculus [153].

Conclusions and future directions
We have reviewed emerging methods for the identification
and characterization of large-scale structural and func-
tional brain networks, and have suggested new concepts
in cognitive brain theory from the perspective of large-scale
networks. Although critical open questions remain (Box 3),
the large-scale brain network framework described here
offers a principled and systematic approach to the study of
cognitive function and dysfunction [154,155].

Continued progress in understanding of cognitive func-
tion and dysfunction will depend on the development of
new techniques for imaging structural and functional
brain connectivity, as well as new methods for investi-
gating dynamic interactions within and between networks.
In the remainder of this section, we discuss important
directions for future research and highlight areas in which
progress is likely to occur.

Although we have reviewed studies that tend to map
cognitive functions onto large-scale brain networks, we
expect that attempts to equate individual brain networks
with a set of cognitive functions could prove to be just as
inadequate as attempts to equate single brain regions with
specific cognitive functions. It is likely that the function of
any cognitive brain network ultimately depends on its
multidimensional context [156]. We predict that future
studies will explicitly recognize the importance of context
in the formation of large-scale functional networks, and
will seek to determine the other factors contributing to
context in addition to anatomical structure.
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In the same vein, although our review has emphasized
studies based on the fMRI BOLD signal, our perspective
does not imply a static view of large-scale brain networks.
Rather, we view cognitive function as a dynamic process
that is constrained by intrinsic structural connectivity and
ongoing physiological processes. We anticipate that the
future will increasingly bring more studies seeking to
relate dynamic processes such as oscillatory phase syn-
chrony to processes occurring at slower time scales. The
growing tendency to combine EEG and fMRI recording
modalities in the same study [157] represents a trend in
this direction.

Many of the issues raised in this review, such as the
problem of relating functional network edges existing at
different time scales, are exceedingly difficult to address
strictly by experimental means. Computational modeling
is becoming increasingly important for studies of large-
scale brain networks [158], and its importance is likely to
grow even more in the future. In our view, for the foresee-
able future computational modeling will represent the best
means of reconciling large-scale brain networks identified
by different recording modalities. A compelling example of
the need for computational modeling is the problem of
relating the effects of different types of neurons, neuro-
transmitters and neuromodulators on network node
activity to neuroimaging results in which network nodes
appear as unitary neural masses.

The potential value of computational modeling is also
evident when considering that the prevalent view of large-
scale brain networks as small-world networks is largely a
static image [37,46,135]. Studies of small-world and other
network properties provide insights into the network
architecture and help to demarcate hierarchies. A chal-
lenge for cognitive neuroscience is to better understand
how intrinsic hierarchies in brain networks influence cog-
nition. Computational modeling could prove to be essential
for understanding the dynamic interactions within small-
world brain networks that are important for cognition.

Another direction for future research is ongoing refine-
ment of the concept of a network node. As discussed in our
review, this concept is derived from multiple structural
and functional methodologies, and currently there is no
clear consensus as to which is most relevant for cognitive
neuroscience. We suggest that future development of
methods to define cytoarchitectonic maps [23,44,111]
might eventually satisfactorily address many critical ques-
tions regarding the functioning of large-scale network
nodes.

Finally, it will be essential for future studies to critically
address the ways in which network nodes and edges are
constrained and reorganized by learning and development.
It is to be expected that the boundaries of network nodes
shift with learning and that prominent changes in network
edges are even more likely. Consideration of individual
variability will have important implications for under-
standing the changes in large-scale network function that
occur during development. In adults, some expansion of
node size is likely; however, changes in the strength of
network edges are likely to be most critical for understand-
ing of large-scale network changes during learning [159]
and development [116].
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