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Working memory enables the short-term representation and utilization of 

behaviorally relevant information when that information is no longer 

available from the environment. How are such representations main-

tained in the brain? Extensive evidence demonstrates sustained activa-

tion in frontal and parietal areas during memory delay periods (1–4). 

Although the specific role of these activity patterns is not fully unders-

tood, theoretical, anatomical and electrophysiological studies suggest 

that synchronous interactions among these cortical regions support 

working memory processes (5–11). While task-specific synchronization 

has been observed between prefrontal and parietal areas (12, 13), its 

contribution to working memory is largely unknown. We tested the hy-

pothesis that neuronal synchronization across the fronto-parietal network 

carries content-specific information that contributes directly to visual 

working memory. The pattern of fronto-parietal synchronization should 

thus vary as a function of the object held in memory. 

We performed multi-electrode recordings of broadband neuronal ac-

tivity (separated into unit activity and local field potentials (LFPs)) in 

prefrontal (PFC) and posterior parietal (PPC) cortices in two macaque 

monkeys (A and B) while they performed an oculomotor, delayed 

match-to-sample task (Fig. 1A,B) (14). This task required the monkeys 

to match the identity of the sample object. Figure S1 shows the recording 

locations and sample sizes relative to the cortical sulci in both monkeys. 

We simultaneously sampled activity from up to 6 PPC and 6 PFC areas 

(see fig. S2 for an example), yielding a total of 30 fronto-parietal, inter-

areal comparisons. The resulting data set, consisting of LFPs and unit 

activity recorded over 27 and 47 days, in monkeys A and B, respective-

ly, is given in table S1. 

We first determined the time course of fronto-parietal synchroniza-

tion by computing the time-frequency coherence spectrum on correct 

trials for fronto-parietal LFP pairs from all sessions (14). These calcula-

tions revealed a common temporal pattern of synchronization that corre-

lated with the events of the task (Fig. 1C). In this example, coherence in 

the 15-25 Hz band peaked during the pre-sample period, transiently de-

clined following the sample stimulus onset, and increased again during 

the delay (15) reaching a maximum 

prior to the match. The relative phase 

between the signals in this frequency 

range also varied over the course of the 

trial (Fig. 1D). During the pre-sample 

and sample periods, PFC showed a 

phase lead near 25 degrees that in-

creased during the delay period to ~40 

degrees. 

To determine how synchronization 

varies with the sample stimulus held in 

memory, we first identified pairs hav-

ing significant coherence (Table 1) and 

then applied mutual information analy-

sis to the LFP coherence spectra from 

those pairs at all time-frequency bins 

(14). (Since the analysis of mutual 

information is applied to coherence 

spectra, rather than individual trials, 

we refer to the resulting metric as the 

coherence selectivity index (CSI).) 

Because the sample stimuli differed in 

their location and identity, we assessed 

the identity selectivity at each stimulus 

location and the location selectivity for 

each identity (16). Figure 2A shows a 

fronto-parietal pair displaying identity 

specific coherence during the delay 

period. A band of elevated coherence 

(centered at ~20 Hz) during the delay period differs in magnitude and 

time-course with the object held in memory. Figure 2B quantifies this 

effect, revealing a significant increase in CSI during the late delay pe-

riod. 

To assess the stimulus selectivity across the entire sample, we first 

identified pairs with significant CSI (Table 1) and then pooled the data 

separately for identity and location for those pairs having significant CSI 

during the delay. If a pair showed selectivity for multiple locations 

and/or objects, the stimulus condition with the highest coherence was 

chosen. The median CSI value, as a function of time and frequency 

(CSI(t,f)), from the selected pairs is shown in Fig. 2C. (The CSI(t,f) 

distributions for identity are shown separately for each monkey in fig. 

S3A). Several effects are notable. First, location specificity, and to a 

lesser extent identity specificity, appear during the sample period at fre-

quencies less than 15 Hz. This likely reflects the spatial and identity 

selectivity of neuronal populations in fronto-parietal networks (17–20). 

Second, on average, an increase in CSI occurs throughout the delay pe-

riod with a peak frequency at ~15 Hz. Third, we found no significant 

differences in the CSI values between the pairs tuned for location and 

identity, in the frequency range of 12-22 Hz, at any time bin throughout 

the trial (minimum p = 0.6; KS-test, Bonferroni correction). Consistent 

with delay-period selectivity observed at the cellular level (16, 19–21), 

these findings demonstrate both identity and location specificity of fron-

to-parietal synchronization during the memory period. 

The content specificity of delay-period coherence observed in the 

CSI raised the question of how coherence magnitude and phase vary as a 

function of time and stimuli. Since a major objective of this study was to 

characterize identity specific activity, using the identity matching-rule, 

we focused all subsequent analysis on identity specificity. For each iden-

tity-selective pair, we rank ordered the mean delay-period coherence in 

the 12-22 Hz range for the three identities (maximum, intermediate and 

minimum). Figure 2D shows the time-course of the ranked mean cohe-

rence (± SEM) for each category. The coherence values for the three 

objects maintain a clear difference throughout the delay. (Distributions 
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of the maximum coherence for each monkey are shown in fig. S3B). The 

mean relative phase ranged from 15 to 40 degrees throughout the trial (at 

the center frequency of 17 Hz, these relative phase values correspond to 

time lags of 2.45 ms and 6.53 ms, respectively), showing a consistent 

prefrontal phase lead that gradually increased over time, but showed no 

apparent difference with respect to the stimuli (fig. S4). (Interestingly, a 

small percentage of phase values ranged between 140-180 degrees indi-

cating a near anti-phase relationship). To further identify the source of 

the coherence differences, we analyzed the mean and variance of the 

relative phase and power across the distributions in the 12-22 Hz range. 

The phase variance showed a significant difference across the population 

in the interval between 1.15 and 1.70 s. (p < 0.05, Kruskal-Wallis (KW) 

test, Bonferroni corrected), indicating an inverse relation between cohe-

rence magnitude and phase variance in the identity selective pairs (Fig. 

2E). We found no difference in the power in the same frequency range 

for any of the three stimuli in either PPC or PFC (KW test; p > 0.05, 

Bonferroni corrected) (fig. S5), suggesting that the differences in cohe-

rence were due primarily to differences in phase consistency. 

To determine which cortical areas engage in the synchronous memo-

ry-related activity, we sorted the fronto-parietal pairs showing significant 

delay-period CSI according to their respective cortical areas. The results 

reveal several notable findings (fig. S6). First, although our sample dis-

tribution was non-uniform, we found content-specific, fronto-parietal 

coherence among all sampled cortical areas. Second, the incidence of 

significant coherence selectivity varied widely (ranging from 4% to 

50%) and occurred more often than expected from a uniform distribution 

(p < 0.05; randomization test) for both identity and location only among 

pairs involving the lateral bank of the intra-parietal sulcus (i.e., areas PG 

and LIP). Thus, memory-related, fronto-parietal synchronization is a 

widespread process distributed across multiple cortical regions (15, 22, 

23). 

Having demonstrated content specific synchronization during the de-

lay period, we sought evidence for which cortical areas exert influences 

that might control or modulate this activity. Using Wiener-Granger Cau-

sality (WGC) in the time-frequency domain, we estimated the two direc-

tions of predictive influence within each fronto-parietal pair for the 

object yielding the maximum delay-period coherence (14). Figure 3A 

shows the time course of the mean (± SEM) WGC for the two directions 

in the 12-22 Hz band. On average the influence is greater from PPC to 

PFC and both directions of influence increase during the delay period (p 

< 0.001 for time and causation; two-way ANOVA). Because taking the 

average obscures the heterogeneity of causal influences across the popu-

lation, we implemented a method to detect significant differences be-

tween the two directions of influence for each pair ((14), fig. S7). We 

applied this method to the 400 ms of data preceding match onset to avoid 

potential nonstationarities due to the sample stimulus offset. For each 

pair with significant directional difference in WGC, the source of the 

larger value (PFC or PPC) was considered the sender and that of the 

smaller value the receiver. We then parsed the data according to cortical 

area in PFC and PPC regions, and plotted the incidence of senders and 

receivers of each area in the 12-22 Hz band with respect to all areas in 

the other cortical region (Fig. 3, B and C; areas PGM and 9L were ex-

cluded due to small sample sizes). All cortical areas displayed direction-

al influences as senders and receivers, but the incidence of senders was 

greater in PPC (13.6%) than PFC (7.5%), and some PPC areas did not 

receive causal influence at all from some PFC areas. The area with the 

highest incidence of senders was LIP (25.7%) and that with the highest 

incidence of receivers was dPFC (17.5%). 

Our WGC analysis suggests that fronto-parietal synchronization is 

governed by synaptic influences in PFC that arise in PPC. We used inter-

areal spike-field coherence (SFC) measurements to evaluate this predic-

tion (14), reasoning that this measure is indicative of directed synaptic 

influences (13). For each fronto-parietal pair, we calculated the SFC 

between spikes in one region and the LFP in the other during the delay 

period (1.0-1.8 s) and detected significant SFC as a function of frequen-

cy (p < 0.01). This revealed significant spectral peaks at frequencies 

between 10-30 Hz (see Fig. 3D for an example). We then calculated the 

mean incidence of significant SFC in the 12-22 Hz range for each cortic-

al area in which the unit activity was recorded (see table S2 for sample 

distribution). The results support the WGC finding of a dominant PPC to 

PFC influence by demonstrating that significant SFC occurred more 

often in PPCunit–PFClfp pairs than PFCunit–PPClfp pairs (Fig. 3E, p < 0.05, 

KS test). The agreement between the WGC and SFC results, supporting 

a dominant PPC to PFC influence, as opposed to the relative phase re-

sults showing a PFC phase lead, supports previous findings that relative 

phase is not a reliable index of neural influence (24). 

To further evaluate the contribution of unit response selectivity, we 

calculated the mutual information for firing rate as a function of time 

(fig. S8) and, consistent with previous reports (19, 20, 25), found wide-

spread selectivity during the sample and/or delay across both PFC and 

PPC areas (table S3). We then subdivided the SFCs according to the 

identity selectivity of the cellular responses. The results for the PPCunit–

PFClfp pairs show that significant SFC with PFC involves both selective 

and non-selective parietal neurons (Fig. 3F). (PFCunit–PPClfp pairs were 

not included due to small sample sizes.) However, the majority of spike-

field interactions involving identity selective units come from cells rec-

orded in areas LIP, PG and to a lesser extent MIP. 

Our findings demonstrate that fronto-parietal synchronization during 

visual working memory is widespread, task-dependent and content spe-

cific during the delay period. The patterns of synchronization are go-

verned by influences arising in PPC (26) and are prevalent among 

parietal neurons that display identity selectivity (19). These findings are 

consistent with other reports on the relationship between synchronization 

and performance in working memory tasks (15, 22, 27), the presence of 

fronto-parietal synchronization during memory-related search (12), and 

the spatial attention modulation of inter-areal coherence (28). Thus, 

while other cognitive processes, such as attention, anticipation and motor 

planning, are likely to contribute to these effects, our findings demon-

strate that short term memories are represented as stimulus specific pat-

terns of synchronized activity that are widely distributed throughout the 

fronto-parietal network (29). This raises the question of how these pat-

terns, their directional influences, spectral dynamics and spatial distribu-

tion are modified by other working memory processes, such as retrieval, 

resistance to distraction, load, manipulation and object-based attention. 

Other frequency bands have been associated with working memory (22, 

30–32) and abundant evidence indicates that other cortical areas contri-

bute to these representations. A major challenge will be to elucidate the 

neuronal mechanisms underlying memory-related, fronto-parietal inte-

ractions, and their relationship to different frequency bands and other 

cortical areas. 
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Fig. 1. Task dependence of fronto-parietal coherence. (A) 
Timeline of the identity-matching task. During visual fixation, 
a sample stimulus, consisting of 1 of 3 possible objects 
positioned at 1 of 3 possible locations, was presented for 500 
ms, followed by a random delay of 800-1200 ms. At the end 
of the delay a match stimulus was presented, consisting of 
the previous sample object (target) and a distracter object 
positioned at 2 out of 3 possible locations. A saccadic eye 
movement to the target was rewarded with juice (14). (B) 
Example of the signals recorded on a single trial in monkey 
A. Top two traces: broadband signals from area PEC of the 
parietal cortex (PEC, green) and dorsolateral prefrontal 
cortex (dPFC, purple). Bottom two traces: horizontal and 
vertical eye position. (C,D) Time-frequency coherence 
spectrum (C) and average relative phase between 15 and 25 
Hz (D) locked to the sample presentation (all stimuli, correct 
trials, 400 ms window, 50 ms step). In B-D, and in all 
subsequent figures, the vertical lines show the onset and 
offset of the sample. Time-frequency distributions in this and 
subsequent figures are interpolated at 1 Hz and 2 ms 
resolution. 

Table 1. Number of fronto-parietal pairs with significant coherence and CSI between 10 to 42 
Hz. 

N=2191  PRE 
(0.1-0.4 s) 

SA 
(0.6-0.9 s) 

DE1 
(1.1-1.4 s) 

DE2 
(1.4-1.7 s) 

DE 
(DE1 and/or DE2) 

Identity Sig. Coh 1349 1216 1369 1599 1662 
 Sig. CSI 51 199 244 290 438 
  3.8% 16.4% 17.8% 18.1% 26.4% 
       

Location Sig. Coh 1286 1160 1274 1488 1550 
 Sig. CSI 41 194 223 263 409 
  3.2% 16.7% 17.5% 17.7% 26.4% 

Abbreviations: 

PRE: presample period 

SA: sample period 

DE1: early delay period 

DE2: late delay period 

DE: the whole delay consisting of either DE1 and/or DE2 

The timing of these periods is shown in parentheses. 
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Fig. 2. Content specific fronto-parietal 
synchronization during working memory. 
(A) Time-frequency coherence spectra 
for an LFP pair for the three sample 
objects presented at one location. (B) 
Coherence selectivity index as a function 
of time and frequency (CSI(t,f)) for the 
same pair showing significant selectivity 
(significance threshold at p < 0.02 
indicated by white contours) during the 
delay period. (C) Median value of CSI(t,f) 
for LFP pairs showing selectivity for the 
sample identity (upper) and location 
(lower) during the delay. (D) Mean rank-
ordered coherence (± SEM) in the 12-22 
Hz band for the same identity selective 
pairs as in the upper plot of C. (E) Mean 
standard deviation of the relative phase 
(± SEM) in the 12-22 Hz band for the 
same identity selective pairs as in the 
upper plot of C. In plots D, E and Fig. 3A, 
the two SEMs were calculated with the 
number of pairs or sessions as the 
degree of freedom. 

Fig. 3. Fronto-parietal interactions are dominated by parietal-
to-frontal influences. (A) Time course of WGC in the 12-22 
Hz frequency range for all identity selective pairs (mean ± 
SEM; n = 438). (B, C) Bar charts of the incidence of 
significant WGC directional differences with respect to 
cortical area for all the signal pairs in A. (D) Example of the 
SFC for a LIP unit and the field recorded in area 8AD. 
Dashed line indicates confidence limit (p < 0.01, randomized 
surrogate). (E) Percentage of fronto-parietal pairs with 
significant SFC between 12 and 22 Hz. The unit activity was 
recorded in the labeled areas. See tables S1 and S3 for 
abbreviations and sample sizes. (F) Percentage of significant 
PPCunit–PFClfp pairs with respect to the parietal area in which 
the unit activity was recorded and split according to the 
stimulus selectivity of the cellular responses. 
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