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Abstract 

A positive relationship between brain volume and intelligence has been suspected since the 19th 

century and empirical studies seem to support this hypothesis. However, this claim is not 

uncontroversial because of concerns about publication bias and the lack of systematic control for 

critical confounding factors (e.g., height, population structure). We performed a pre-registered 

study of the relationship between brain volume and cognitive performance in a new adult 

population sample from the UK that is about 70% larger than all previous investigations on this 

subject combined (N=13,608). Our analyses systematically controlled for sex, age, height, 

socioeconomic status and population structure, and is free of publication bias. We find a robust 

association between total brain volume and fluid intelligence (r=0.19), which is consistent with 

previous findings in the literature after controlling for measurement quality of intelligence in our 

data. We also find a positive relationship with educational attainment (r=0.12). These 

relationships are mainly driven by grey matter (rather than white matter or fluid volume) and 

effect sizes are similar for both sexes and across age groups.  
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From logical reasoning to grasping new concepts, humans differ in cognitive capacities. A 

substantial part of this variance is captured by psychometric measures such as fluid intelligence 

tests or the general intelligence factor (g) which aggregates test results across various domains of 

cognitive performance. These measures are reliable, stable across the lifespan (Deary et al. 

2000), and are associated with important life outcomes including educational attainment (Deary 

et al. 2007), job performance, and health (Batty et al. 2009).  

 

Much research has been devoted to understanding how individual differences in cognitive 

performance arise, and whether they can be accounted for by environmental, developmental, 

genetic, and neuroanatomical factors. A classic hypothesis proposes a positive association 

between intelligence and total brain volume (TBV; e.g., Francis Galton 1889). For decades, the 

only way to test this hypothesis were empirical studies using proxies of TBV such as head 

circumference. However, this work was controversial due to methodological issues (Stott 1983) 

and concerns about racial and cultural bias. 

 

The introduction of Magnetic Resonance Imaging (MRI) in the late 1980s led to a burst of 

studies that directly examined the relationship between TBV and intelligence. The first published 

study reported a correlation of r=.51 in a sample of 40 college students (Willerman et al. 

1991/4). However, the reported association has declined as sample sizes grew: the first meta-

analysis of the literature (k=14, N=858) estimated an average correlation of r=.37 (G. Gignac, 

Vernon, and Wickett 2003). A later, more comprehensive meta-analysis (k=37, N=1,530) 

estimated a smaller correlation of r=.29 (McDaniel 2005/7). The largest meta-analysis to date 
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that included unpublished data reported an even smaller effect of r=.24 (k=88, N=8,036, 

(Pietschnig et al. 2015)).  

 

Scholars have been debating the reliability, size, and meaning of a relationship between TBV and 

cognitive ability for many years (e.g., Stott 1983). Finding consensus is impeded by three main 

limitations.  

 

First, only few studies systematically controlled for confounding factors such as height, age and 

socioeconomic status.  

 

A second concern is population stratification, i.e. systematic biological differences across groups 

that might correlate with environmental and cultural factors.
1
 If not properly controlled for, 

population stratification can induce a spurious relationship between biomarkers and phenotypes 

(Cardon and Palmer 2003). For example, individuals of north-west European descent may be 

slightly taller, have slightly larger brains, and perform slightly better in intelligence tests. But 

this effect could be primarily driven by more favorable environments (e.g. better schools, better 

healthcare) that could confound the relationship between TBV and intelligence. Genetic 

association studies have shown that self-reported ethnicity is often not sufficient to correct for 

such confounds. However, controlling for the first few principal components from the genetic 

data of the study participants has proven to be an effective strategy that is now standard in 

genetic association studies (Price et al. 2006; Rietveld, Conley, et al. 2014).   

                                                        

1 Population stratification is a well-known concern in genetic association studies. For example, a spurious 

relationship between the LCT gene that codes for the enzyme lactase and EA is found if genetic association studies 

do not properly control for population stratification (Rietveld, Conley, et al. 2014). Lactose intolerance is unrelated 

to cognitive ability and is much more frequent in south-eastern parts of Europe than in north-western parts.  
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A third issue is a bias towards publication of positive, statistically significant results and effect 

sizes that overestimate the true values. The most recent meta-analysis on intelligence and TBV by 

Pietschnig et al. (2015) found evidence for publication bias and showed that the correlation in 

published reports was r=.30 (k=53; N=3,956), but only r=.17 in a larger set of unpublished 

studies (k=67; N=2,822). In contrast, (G. E. Gignac and Bates 2017) did not find evidence for 

publication bias. However, their analysis was restricted to published studies of healthy 

participants only. While several analytical techniques have been proposed to detect such bias, 

their capacity to estimate the true effect size is controversial and their power to reject the null 

hypothesis of no publication bias is low in small samples (Ioannidis et al. 2014). A clean 

approach to avoid publication bias is to conduct a well-powered study following a pre-registered 

analysis plan (Gonzales and Cunningham 2015). 

We address these three shortcomings of the current literature here. Specifically, we conducted a 

pre-registered analysis of the relationship between measures of cognitive performance and TBV 

using data from the UK Biobank (hereandafter UKB; Miller et al. 2016; Sudlow et al. 2015). The 

UKB is a data collection of unprecedented richness and scale that was not part of any previous 

study on the relationship between TBV and cognitive performance. Our final sample contains 

N=13,608 genotyped individuals with anatomical MRI brain scans, coming from an adult 

population (>40 years old) of European decent, all of whom completed at least one test of 

cognitive performance. This sample is ≈70% larger than all previous studies associating in-vivo 

TBV and intelligence combined (Pietschnig et al. 2015), it permits novel ways to control for 

confounds, and allows comparing effect sizes across various demographic groups.  
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Our investigation provides the opportunity for two additional contributions. First, we investigate 

the differential contributions of grey matter (neuronal cell bodies, dendrites, unmyelinated axons, 

glial cells, synapses, and capillaries), white matter (myelinated axons, or tracts), and 

cerebrospinal fluid to the association between TBV and intelligence. Both grey and white matter 

volumes are genetically correlated with general intelligence (Sniekers et al. 2017) and are 

thought to contribute to the association based on small sample studies (e.g., Haier et al. 2004); 

understanding their differential contributions is essential for further theoretical development of 

accounts for the relationship between TBV and intelligence. 

Second, we examine the association between TBV and educational attainment (EA), an important 

real-life outcome that crucially impacts individuals’ income, health, and longevity (Lager and 

Torssander 2012). To date, this association has only been investigated by a few small sample 

studies of elderly or clinical populations, e.g., (Coffey et al. 1999).  

Methods 

The UK Biobank data 

The UKB (Miller et al. 2016; Sudlow et al. 2015) recruited 502,617 people aged between 40-69 

years in 2006-2010 from the general population across the entire UK. Almost all participants 

(488,363) have been genotyped (Bycroft et al. 2017), and extensive batteries of lifestyle 

measures have already been collected. The project aims to acquire high-quality MRI scan data 

from 100,000 participants in the next few years (Miller et al. 2016), following a standardized 

protocol at three dedicated, identical scanning centers operating 7 days per week, each scanning 

18 subjects per day (Petersen et al. 2013). As of April 2018, 15,040 participants have already 
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been scanned and their T1 structural brain images have been processed by the UKB team 

(Stephen Smith 2014) and converted from DICOM to NIFTI format. Health outcomes are 

tracked over time for all participants by linking the Biobank to official hospital records. The 

principle goal of the project is to use large-scale longitudinal data in order to better understand 

disease etiology and to develop predictive methods for early onset disease detection. An 

important byproduct of the Biobank project is the generation of an unprecedentedly large and 

rich dataset to study behavioral phenotypes and their relation to the collected biological markers 

(e.g., genotypes, brain scans) and health outcomes (e.g. cognitive performance, subjective well-

being, BMI, diseases).  

 

Measures 

Fluid intelligence  

The UKB contains a short measure of verbal-numerical reasoning (referred to as “fluid 

intelligence test”) that consists of 13 multiple-choice questions (see Supplemental Material) 

measuring the capacity to solve problems that require logic and reasoning ability, independent of 

acquired knowledge. Participants had two minutes to complete as many questions as possible 

from the test. The fluid intelligence test score is the simple unweighted sum of the number of 

correct answers given to these 13 questions. Participants who did not answer all of the questions 

within the allotted 2-minute limit are scored as zero for each of the unattempted questions.  

 

The fluid intelligence test was administered on three occasions: (1) the initial assessment visit, 

(2) the first repeat assessment visit, and (3) the imaging visit (see below). The test was also 
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administered in an online follow-up, which contained one additional question (thus, the 

maximum score was 14). The pairwise correlation between measurement instances in the sample 

that included brain scans and genotypes was between .60 and .69 (N between 989 and 7,584, see 

Table S1), consistent with earlier reports (Lyall et al. 2016). Participants did not receive 

feedback about their performance and they were not informed about the correct answers to the 

test questions at any point in time. We had access to N=14,021 with brain scans and at least one 

measurement instance of fluid intelligence. To maximize sample size and to reduce noise in the 

measure, we aggregated the scores of all measurement instances. To do so, we standardized each 

score separately to have a mean of 0 and a standard deviation of 1. We constructed the variable 

fluid intelligence of each participant by taking the average of these standardized scores (in cases 

multiple observations were available for an individual), and standardized the resulting measure 

again. To control for differences among individuals who participated in different test instances 

(e.g., participants who have taken all four tests vs. only one of them), we generated indicator 

variables for each one of the tests (i.e., a variable that equals one if the participant took a specific 

instance of the test and zero otherwise, and likewise for the other test instances) and included 

them as control variables in the regression analyses. 

Other cognitive measures 

Apart from the fluid intelligence measure, we performed robustness checks and additional 

exploratory analyses using three additional cognitive tests that are currently available in a large 

subsample of the UKB (numeric memory, reaction times, and visual memory). The psychometric 

properties of these tests are described in detail in Lyall et al. (2016).  

 

Numeric memory was measured by a task that first showed participants a two-digit number and 
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asked to recall that number after a short pause. The number of digits then increased by one until 

either an error was made or the maximum number of twelve digits was reached, and the final 

number of digits shown was recorded. A higher number implies better cognitive performance.  In 

the reaction time task, participants completed a timed test of symbol matching similar to the 

known card game ‘Snap’ and their mean response time across trials containing matching pairs 

was recorded. Higher scores imply slower responses, i.e. lower cognitive performance. Visual 

memory was measured by a task in which participants memorized the positions of either 3 or 6 

card pairs and then had to match them from memory while making as few errors as possible. The 

test score denotes the number of errors made (i.e., higher scores imply lower cognitive 

performance). 

 

General cognitive ability (‘g’)  

It is well-known that low measurement quality can attenuate the estimated relationship between 

variables (Greene 2003) and G. E. Gignac and Bates (2017) find substantially higher correlations 

between brain size and cognitive ability in studies with “excellent” measures of IQ than in 

studies with “good” or “fair” measures (.39 [95% CI: .32, .46], .32 [.16, .46], and .21 [.14, .28], 

respectively). As a robustness check of our main results based on the crude fluid intelligence test 

described above, we repeated our analysis using four more comprehensive measures of general 

cognitive ability (henceforth referred to as ‘g’). Our measures of g used the fluid intelligence test 

as well as the three additional cognitive tests available in the UKB, described above. 

 

Our primary measure of g employed all available measurement instances of these tests and 

standardized each instance separately. Then, we averaged across instances and standardized the 
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resulting measure again. Following standard practice in the literature, we extracted the first 

unrotated principal component from these various measures of cognitive performance to obtain a 

proxy for g (Lyall et al. 2016; Rietveld, Esko, et al. 2014; Benyamin et al. 2013), yielding 

N=7,511.  

 

Consistent with earlier studies, we find that fluid intelligence has the highest loading on g -- .77 

in Lyall et al. (2016) and .78 in our data, see Table S2. In our analyses, we chose to focus on 

fluid intelligence instead of g because (i) the numeric memory test is only available in a subset of 

our participants which reduces the sample size for g analyses by almost 50% compared to fluid 

intelligence and (ii) imputation of missing observations is not possible without potentially 

introducing substantial noise (Rubin 2004). We preferred fluid intelligence over the other two 

cognitive tests that were available in our entire sample (reaction time and visual memory) 

because these two have substantially lower loadings on g (-.37 and -.48, respectively) and lower 

retest reliability (rreaction_time≈.55, rvisual_memory≈.21, see Table S1).    

 

Our second measure of g was constructed by performing factor analysis (FA) of a single factor 

on the four tests, instead of principal component analysis. The analysis used minimum residuals 

estimation and oblimin rotation. The correlation between this measure of g and our primary 

measure derived from principal component analysis (PCA) was rg-FA, g-PCA=.94.  

 

Our third measure of g used a previously published protocol to construct g in the UKB described 

by Lyall et al. (2016). This protocol only made use of the data from the first touchscreen 

interview, it ignored data from the 3-pair version of the pair matching test, and used LN-
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transformations of reaction time and LN + 1 of the visual memory tests. It then used PCA as a 

data reduction technique to extract g (N=1,017).   

 

Our fourth measure of g was a general cognitive ability measurement constructed in a similar 

manner to our primary measure, but now excluding the fluid intelligence scores before 

performing PCA (N=7,511). This provides a measure of g that is independent from our main 

fluid intelligence measure. 

 

All of these four measures of intelligence would be rated as “good” according to the guidelines 

established by G. E. Gignac and Bates (2017) (i.e. 2-8 tests, 2-3 dimensions, 20-39 min testing 

time), compared to a “poor” rating of our main measure of fluid intelligence (one test, one 

dimension, very short testing time). However, fluid intelligence allows us to study the 

relationship with TBV in a substantially larger sample (N=13,608 versus N=1,017 to N=7,511). 

 

Educational Attainment (EA) 

Following the standard established by the Social Science Genetic Association Consortium 

(SSGAC) (Rietveld et al. 2013), we measure EA as US years-of-schooling equivalents for the 

highest educational degree an individual obtained. We follow the ISCED 1997 classification 

(UNESCO), which leads to seven categories of EA that are internationally comparable. EA was 

measured via self-reports in the UKB on 3 occasions: (1) the initial assessment visit, (2) the first 

repeat assessment visit, and (3) the imaging visit. We use the highest educational degree reported 

on any of these occasions as our measure of EA. 
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Total brain volume  

The UKB collected T1-weighted structural brain images using a 3-T Siemens Skyra with a 32-

channel head coil (Siemens, Erlangen, Germany). The scanning parameters were as follows: 

repetition time (TR)=2000 ms; echo time (TE)=2.1 ms; flip angle=8°; matrix size=256 × 256 

mm; voxel size=1 × 1 × 1 mm; and number of slices=208. Instead of using the preprocessed 

brain size variables provided by the UKB, we analyzed the T1-weighted images ourselves with 

the Computational Anatomy Toolbox (CAT12) implemented in SPM12.
2
 The CAT12 software is 

a fully automated toolbox for measurements of gray matter (GM) and white matter (WM) 

volumes and cortical thickness at voxel and region-of-interest levels. Image preprocessing used 

the default settings of CAT12. Images were corrected for bias-field inhomogeneity, segmented 

into GM, WM, and cerebrospinal fluid (CSF), spatially normalized to the MNI space using linear 

and nonlinear transformations, and modulated to preserve the total amount of signal in the 

original image during spatial normalization. Total brain volume (TBV) was calculated by 

summing the raw volumes of GM, WM, and CSF. 

  

For quality assurance, we conducted the following checks. First, we inspected all T1 images that 

were available to us as of April 2018 visually (N=14,793) and excluded 48 images due to 

artifacts, poor image quality, or gross brain pathology hampering image segmentation. Next, we 

processed the images using the CAT12 toolkit (Gaser and Dahnke 2016) and performed the 

sample homogeneity check that is implemented in that software package, resulting in the  

exclusion of 366  images because they were more than 2 SD away from the sample mean. After 

these quality control steps, images from 14,379 individuals were available for analysis. The vast 

                                                        
2
 CAT toolbox: www.neuro.uni-jena.de/cat/ ; SPM 12: www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
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majority of these 14,379 individuals reported to be of white European ancestry (N=13,894, UKB 

data field 21000). 

 

Independent from us, the UKB Imaging Working Group also derived a measure of brain volume 

in a slightly smaller subsample (N=14,165) that is based on white and grey matter only (i.e. 

excluding fluid, see data field 25010 and (Miller et al. 2016)). The correlation between their 

measure of brain volume and our TBV is r=.91 (p < 0.0001). As a robustness check, we repeated 

our main analysis with the UKB-derived measure.  

 

Genetic principal components  

To control for ancestry and genetic diversity in the sample, we used the first 40 principal 

components (PCs) of the genetic data (for details, see (Bycroft et al. 2017)). The PCs were 

derived from high quality markers from all autosomes that were pruned to minimise linkage 

disequilibrium (Price et al. 2008), resulting in a set of 147,604 SNPs that were obtained from a 

set of 407,219 unrelated, high quality samples that matches our subsamples very closely in terms 

of ethnicity.    

 

Descriptive statistics of the sample 

Fig. S1 displays the distribution of TBV in our sample; the distributions of the cognitive scores 

and EA are displayed in Fig. S2-S7. The descriptive statistics of our sample are reported in Table 

S3, and Table S2 summarizes the first order pairwise correlations between the key variables 

used in our analyses.  
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Among the different cognitive measures, fluid intelligence was most strongly correlated with our 

general intelligence factor (‘g’), as well as EA and TBV. Male sex and body height had strong 

positive correlations with TBV and weak positive correlations with cognitive performance in the 

UKB sample. These findings highlight the importance of controlling for sex and height in our 

analyses.  

We also observe small correlations (|r| < .13) between the first and second principal components 

of the genetic data with TBV and measures of cognitive performance, most noticeably for fluid 

intelligence. The first few genetic PCs in European samples typically map the settlement and 

historical migration patterns in a country relatively well. Thus, genetic PCs tend to capture 

environmental differences in terms of living standards, religion, and culture across people which 

may bias the estimated relationship between TBV and fluid intelligence if they are not controlled 

for.  

Analysis 

Our analyses followed a pre-registered protocol (https://goo.gl/NJpUH3). Specifically, we used 

UKB data from all European-descent individuals who were genotyped and scanned by April 

2018 who also had measures of fluid intelligence, EA and all other control variables described in 

the protocol (N=13,608). We tested for an association between TBV (= white matter + grey 

matter + fluid) with fluid intelligence or EA using linear regression models that controlled for 

sex, age at brain scan, age at IQ test (using a dummy for each year to capture non-linear effects), 

all interactions between age at IQ test and sex, height, the indicator variables for the instances of 

the cognitive test, and the first 40 principal components of the genetic data.  
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For individuals who participated in more than one instance of the cognitive test, we computed 

and controlled for the average age at testing, rounded to the next integer value. The regressions 

on EA controlled for birth-year dummies instead of age at IQ measurement, to capture 

differences due to time-specific environmental factors (e.g., educational reforms). To estimate 

the marginal R
2
 of TBV on fluid intelligence and EA, we computed the ∆R

2
 between a model that 

includes all covariates (including genetic PCs) but no TBV, with a model that does include it. 

In order to observe whether the relationship between TBV and cognitive performance is biased 

by subtle population structure and body height, we estimated additional models that do not 

include genetic controls or body height, and compared the coefficients with the model that 

included them. We further performed multiple regression analyses that decomposed the effect of 

TBV into grey and white matter, as well as fluid volume. 

 

Our large sample also allowed us to conduct stratified analyses that elucidate whether the 

relationship between brain size and cognitive measures is constant across different population 

groups. Our analysis plan specified that subsamples need to be large enough to yield at least 90% 

statistical power to test effect sizes of r > .1 at �=0.05 after Bonferroni correction for multiple 

comparison. Assuming we would conduct at most 50 independent tests (�=.05/50=.001), the 

minimum required subsample size to achieve 90% power for an effect of r=.1 is N=2,096. Given 

this threshold, we were well-powered to conduct separate analyses for males (N=6,425), females 

(N=7,183), and four age groups, dividing the sample at the 25th, 50th, and 75th percentile of the 

age distribution (N > 3,278 in each group).  

 

Our analysis plan also considered the possibility to compare effect sizes across groups of 
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different ancestry (e.g. European, Chinese, Indian). However, the vast majority of our final 

sample was of white European descent (N=13,180) and no other ethnic group was large enough 

to be studied separately given our predefined criteria for statistical power. 

  

Apart from our pre-registered plan, we performed additional robustness checks by repeating the 

main analyses while replacing the dependent variables by the three additional cognitive tests 

available in the UKB (numeric memory, reaction time, and visual memory), as well as the four 

different proxies of g that we constructed. Furthermore, we ran regressions that added controls 

for place of birth (using dummy variables for geographic East / North coordinates) and socio-

economic status, approximated by the Townsend deprivation index. The Townsend index is 

based on the postal code of a participant’s household address and measures unemployment, non-

car ownership, non-house ownership, and overcrowding in an area. Higher Townsend scores 

indicate higher deprivation (Hill et al. 2016).  

 

Finally, we tested whether the association between TBV and cognitive performance is driven by a 

specific cognitive construct, by estimating a multiple linear regression model that predicts TBV 

from all four different cognitive tests and control variables.  

Results 

TBV and fluid intelligence 

Fig. 1 illustrates the positive relationship between TBV and fluid intelligence in our pooled 

sample of N=13,608. We find a correlation between TBV and fluid intelligence of r=.21 (95% 
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confidence interval, hereinafter  95% CI: .19 - .23, p=3.20×10
-86

) without genetic controls, and 

r=.19 (95% CI: .17 - .22, p=4.30×10
-74

) after correcting for subtle population structure (Table 

1).
3
 Using the Townsend index of social deprivation and place of birth

4
 instead of genetic PCs 

yields exactly the same result (r=.19, 95% CI: .17 - .22, N=12,822, Table S5). Adding the 

genetic PCs to the regression that already controlled for the Townsend index and place of birth 

does not attenuate the association between brain volume and fluid intelligence any further.  Thus, 

the relationship between TBV and fluid intelligence survives stringent controls for possible 

confounds. Without controlling for body height, the estimated relationship between TBV and 

fluid intelligence slightly increases to r=.21 (95% CI: .19 - .23, p=2.52×10
-92

) (Table S6).  

 

 

  

                                                        
3
 Similar results (i.e., significant coefficients for TBV and substantial overlap in the 95% CIs) are obtained when 

repeating the analyses for each of the test taking instances in isolation, in the sub-sample that took all four tests (see 

Table S4, N=708). 
4
 We report regression results with dummy variables for north / east coordinates; the results hold when dummy 

variables for all interactions of north / east coordinates are used instead. 
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Figure 1: Brain size and fluid intelligence 

The relationship between total brain volume (TBV) and fluid intelligence, represented by a 

local polynomial smooth with 99% confidence intervals (in grey). Fluid intelligence was 

first normalized and then residualized by sex, age, height, the first 40 principal components 

of the genome, sex×age interactions and indicator variables for the instances of the 

cognitive tests taken as independent variables.  

 

 

Overall, variation in TBV accounts for ∆R
2
≈2.1% of the variation in fluid intelligence in the 

sample. The estimated marginal effects in the model including all controls suggest that a 100cm
3
 

increase in TBV at the population mean increases the expected fluid intelligence by .14 standard 

deviations (with sample SD=1, 95% CI: .13 - .16). Using the UKB-derived measure of brain 

volume (N=13,409), we find estimates with overlapping 95% CIs: A correlation of r=.18 (95% 

CI: .16 - .20, p=5.82×10
-68

) in the model including all controls and a marginal effect of .17 for 

each 100cm
3
 increase in total white and grey matter (95% CI: .15 - .18, p= 5.82×10

-68
, Table 

S7).  
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Table 1: Brain volume and fluid intelligence 

Ordinary least squares (OLS) regression with fluid intelligence as the dependent variable. 

Table reports 95% confidence intervals in parentheses. Total brain volume is in cm
3
, 

control variables include sex (baseline category is female), age at scan in years, average age 

at IQ testing sessions (dummy coded) and its interactions with sex, height in cm and 

participant specific IQ testing sessions (dummy coded). The two right columns also include 

controls for population structure using the first 40 principal components of the genome. 

Coefficients for genetic PCs, indicators for IQ test, and age×sex interactions are not 

displayed. 

  Excluding genetic controls Including genetic controls 

  Standardized betas Marginal effects 

(dy/dx) 

Standardized betas Marginal effects 

(dy/dx) 

Total brain volume 0.21*** 0.0014*** 0.19*** 0.0013*** 

  (0.19 - 0.23) (0.0013 - 0.0016) (0.17 - 0.22) (0.0012 - 0.0015) 

Male 0.08 -1.09 0.21 -0.15 

  (-1.05 - 1.22) (-3.71 - 1.54) (-0.91 - 1.33) (-2.75 - 2.44) 

Age at scan 0.26*** 0.04*** 0.22*** 0.03*** 

  (0.17 - 0.34) (0.02 - 0.05) (0.14 - 0.31) (0.02 - 0.04) 

Height 0.11*** 0.01*** 0.09*** 0.01*** 

  (0.09 - 0.14) (0.01 - 0.01) (0.06 - 0.11) (0.01 - 0.01) 

R
2 

0.11 0.11 0.13 0.13 

N 13,608 13,608 13,608 13,608 

* p<0.05; ** p<0.01; *** p<0.001 

 

Including controls for potential confounds, our effect size estimate is 20% to 35% smaller than in 

the recent meta-analyses by Pietschnig et al. (2015) (r=.24, 95% CI: .21 - .27, N=8,036) and G. 

E. Gignac and Bates (2017) (r=.29, 95% CI: .24 - .33). One potential reason is that we used more 

stringent controls for potential confounds than previous work. However, even the raw correlation 

between TBV and fluid intelligence in our data (r=.20) is smaller than in previous work. A likely 

cause underlying this smaller estimate is that fluid intelligence is measured with more noise in 

our data compared to other studies that used longer, more comprehensive cognitive tests (G. E. 

Gignac and Bates 2017). One way to account for measurement error is to divide the correlation 

between fluid intelligence and TBV by the test-retest reliability of the fluid intelligence measure, 
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which is between .60 and .69 (see Table S1).
5
 This leads to disattenuated effects of up to r=.35 

(without genetic controls) and r=.32 (with controls), which is consistent with the estimates in the 

most recent meta-analyses of the literature (Pietschnig et al. 2015; G. E. Gignac and Bates 2017). 

TBV and educational attainment 

We also find a robust empirical relationship between TBV and EA (Table 2). Although EA is 

measured almost without error (in contrast to fluid intelligence), the correlation with EA is 

smaller than for fluid intelligence (r=.12, 95% CI: .10 - .15 including genetic controls, 

N=13,608). We find an almost identical result when using the Townsend index of social 

deprivation and place of birth as control variables for population structure instead of genetic PCs 

(r=.11, 95% CI: .08 - .13, N=12,822, Table S8). Repeating the regressions with the UKB-

derived measure of TBV yields results with overlapping 95% confidence intervals to the main 

analyses (Table S7). Overall, TBV accounts for ∆R
2
≈0.9% of the sample variation in EA. To put 

this result in perspective, an increase of 100cm
3
 in TBV at the population mean increases the 

expected schooling by .4 years.  

Grey matter, white matter, and fluid  

Table 3 shows the results of a multiple regression that decomposed the effect of TBV into grey 

and white matter, as well as fluid volume. The largest contribution to fluid intelligence comes 

from grey matter (r=.13, 95% CI: .10 - .16). White matter (r=.06, 95% CI: .03 - .09) and fluid are 

also associated (r=.05, 95% CI: .03 - .07) with fluid intelligence, but to a much smaller extent. 

For EA we find comparable effect sizes of grey matter (r=.06, 95% CI: .03 - .09) and fluid 

                                                        
5
 This approach assumes that the measurement noise of TBV is negligible. 
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(r=.07, 95% CI: .05 - .09), and an even smaller effect of white matter that is indistinguishable 

from zero (r=.03, 95% CI: 0 - .06).  

Analyses stratified by sex and age 

The relationship between TBV and fluid intelligence is of comparable magnitude for females 

(r=.16, 95% CI: .14 - .18; dy/dx=0.0013, 95% CI: .0011 - .0015) and males (r=.15, 95% CI: .13 - 

.17; dy/dx=.0011, 95% CI: .0010 - .0013, (Table S9). Furthermore, we find no interaction 

between sex and TBV influences on fluid intelligence (Table S10).  

The relationship between TBV and fluid intelligence also appears to be relatively stable across 

age (Table S11). Although the effect size decreases to .15 in the oldest cohort (≥62 years), the 

95% CI (.10 - .19) is overlapping with that of the other three age groups. 

Our results for EA show a similar pattern. We find similar effect sizes for females (r=.11, 95% 

CI: .08 - .13) and males (r=.09, 95% CI: .07 - .12) as well as no significant age-dependent 

variation in effect sizes (Tables S12, S13). 
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Table 2: Brain volume and educational attainment 

Ordinary least squares (OLS) regression with educational attainment as the dependent 

variable. Table reports 95% confidence intervals in parentheses. Brain volume is in cm
3
, 

control variables include sex (baseline category is female), age at scan in years, birth year 

(dummy coded) and its interactions with sex, height (in cm). The two right columns also 

include controls for population structure using the first 40 principal components of the 

genome. Coefficients for genetic PCs, and age×sex interactions are not displayed.  

  Excluding genetic controls Including genetic controls 

  Standardized betas Marginal effects 

(dy/dx) 

Standardized betas Marginal effects 

(dy/dx) 

Total brain 

volume 

0.11*** 0.0037*** 0.12*** 0.0040*** 

  (0.09 - 0.14) (0.0030 - 0.0044) (0.10 - 0.15) (0.0033 - 0.0047) 

Male 0.53 -8.38 0.49 -7.40 

  (-0.28 - 1.34) (-19.60 - 2.84) (-0.31 - 1.29) (-18.53 - 3.72) 

Age at scan -0.00 -0.00 -0.03 -0.02 

  (-0.12 - 0.12) (-0.08 - 0.08) (-0.15 - 0.09) (-0.10 - 0.06) 

Height 0.06*** 0.03*** 0.06*** 0.03*** 

  (0.03 - 0.08) (0.02 - 0.04) (0.03 - 0.08) (0.02 - 0.04) 

R
2 

0.03 0.03 0.05 0.05 

N 13,608 13,608 13,608 13,608 

* p<0.05; ** p<0.01; *** p<0.001 

 

 

  

Page 21 of 31 Manuscript under review for Psychological Science

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

 

 

 

 

22 

Table 3: White, grey, and fluid matter separately  

Ordinary least squares (OLS) regression with fluid intelligence (two left columns) and 

educational attainment (two right columns) as the dependent variables. Table reports 95% 

confidence intervals in parentheses. Total grey matter, white matter and fluid volumes are 

in cm
3
. Regressions include controls for population structure using the first 40 principal 

components of the genome and all other control variables specified in Table 1 (for fluid 

intelligence) and Table 2 (for educational attainment). Coefficients for control variables are 

not displayed. 

  Fluid intelligence Educational attainment 

  Standardized 

betas 

Marginal effects 

(dy/dx) 

Standardized betas Marginal effects 

(dy/dx) 

Grey matter 0.13*** 0.0021*** 0.06*** 0.0010*** 

  (0.10 - 0.16) (0.0016 - 0.0026) (0.03 - 0.09) (0.0004 - 0.0015) 

White matter 0.06*** 0.0010*** 0.03 0.0004 

  (0.03 - 0.09) (0.0005 - 0.0015) (-0.00 - 0.06) (-0.0001 - 0.0009) 

Fluid 0.05*** 0.0008*** 0.07*** 0.0011*** 

  (0.03 - 0.07) (0.0004 - 0.0012) (0.05 - 0.09) (0.0008 - 0.0015) 

R
2 

0.14 0.14 0.06 0.06 

N 13,608 13,608 13,608 13,608 

* p<0.05; ** p<0.01; *** p<0.001 

 

Robustness checks  

We repeated our analysis with more elaborate proxies of g (Tables S14a-d). 

For our primary proxy of g, we find almost identical standardized effect size estimates as in our 

main analysis on fluid intelligence (r=.18, 95% CI: .15 - .21 including genetic controls, N=7,511; 

Table S14a). The same holds for the proxy of g derived by Lyall et al. (2016) (r=.18, 95% CI: 

.09 - .26, N=1,017, Table S14b). We find slightly higher standardized effect sizes when using 

factor analysis instead of principal component analysis to derive g (r=.21, 95% CI: .18 - .24 

including genetic controls, N=7,511 (Table S14c). However, the 95% CI of the estimates are all 

overlapping with our results for fluid intelligence. These findings are confirmed when we 

estimate marginal effects instead of standardized betas.  
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When using the g measure constructed without fluid intelligence, the relation with TBV was 

substantially smaller (r=.10, 95% CI: .07 - .12 including genetic controls, N=7,511; Table 

S14d), suggesting that a large share of the association between TBV and cognitive ability is 

accounted for by fluid intelligence. 

Specificity 

In order to explore the associations between TBV and cognitive measures that are different from 

fluid intelligence and g, we conducted exploratory analyses using the three other cognitive tasks 

of the UKB (see Table S15).  

We find statistically significant, yet much smaller in magnitude associations of TBV with 

numeric memory (r=.11, 95% CI: .08 - .14 including genetic controls, N=7,722) and visual 

memory (r=-.05, 95% CI: -.07 - -.03 including genetic controls, N=13,292), and no significant 

relationship with the reaction time task (r=-.02, 95% CI: -.04 - .00 including genetic controls, 

N=13,292).  

Moreover, when predicting TBV using a multinomial regression that includes the four different 

cognitive measures in our data altogether, the coefficient of fluid intelligence is substantially 

larger than the coefficients of all other measures (see Table S16), suggesting that the association 

between TBV and cognitive ability is best captured by fluid intelligence. This finding is robust to 

controlling for EA in the regression. It is important to note, however, that the smaller association 

of TBV with numeric memory and visual memory is likely driven by the low quality of these 

measures (see Table S1). 
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Discussion 

Our results indicate a robust positive relationship between TBV and intelligence that is similar 

across sex and various age strata. When we account for the relatively low reliability of the 

cognitive measures in the UKB, the estimated effect sizes are comparable to previous recent 

meta-analyses on this topic. Yet, TBV accounts for a relatively small share in overall variation in 

cognitive performance (∆R
2
≈2%). Importantly, our results are free of publication bias, come 

from a sample that is ≈70% larger than all previous investigations on this topic combined, and 

systematically control for important potential confounds.  

 

Our analysis shows that the lion’s share of the association between TBV and intelligence is 

explained by individual differences in grey matter volume. Furthermore, we document that TBV 

is also positively associated with EA, although the association is substantially smaller than for 

intelligence (∆R
2
≈0.9%).  

 

While our study demonstrates that the association between TBV and cognitive performance is 

solid, our work and the literature as a whole have limitations that provide avenues for further 

research. First, our results are based on a large population sample of adults and elderly that over-

represented individuals of higher socio-economic status, and consists almost entirely of 

European descent individuals from the UK. The positive, linear relationship between TBV and 

fluid intelligence that we observed was driven by the large majority of individuals in that sample 

who had normal range brain volumes and measures of fluid intelligence. At the extreme ends of 

the distributions, the relationship between TBV and fluid intelligence seems to be weaker or even 
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non-existent (Fig. 1). It is reasonable to expect that the positive relationship we observed would 

not hold for people affected by chronic or degenerative neurological problems (e.g., dementia, 

Alzheimer's disease, Parkinson’s disease) or other medical conditions that are known to be 

linked to abnormal brain development or physiology. Furthermore, the results may not generalize 

to children. While we have no reason to believe that the results depend on other characteristics of 

the participants, materials, or context, continuous exploration of the generalizability of the results 

to other populations is worthwhile. 

 

A second important limitation concerns causal inference. The empirical work on the relationship 

between TBV and intelligence or EA, including our study, is based on non-experimental data that 

cannot rule out reverse causation or the influence of unobserved confounds. Although it may be 

most intuitive that brain anatomy causes cognitive performance and EA, a reverse relationship 

may also exist (e.g. via brain plasticity that adapts the brain to how it is used, e.g., May 2011). 

Furthermore, although we control for more potential confounding factors than earlier studies, the 

identifying assumption of regression analysis that the error term is independent from the 

regressors may still be violated. For example, people with larger brains may have access to better 

schools and healthcare systems in a manner that is not captured by our genetic and demographic 

controls. In addition, brain anatomy and cognitive performance are both highly heritable (ℎ�≈.8, 

Posthuma et al. 2002), and the co-heritability between the two (��≈.3, Sniekers et al. 2017) 

suggests that both are partially influenced by the same genetic factors (Posthuma et al. 2002; 

Okbay, Beauchamp, et al. 2016). Investigating these relationships further would be of interest. 
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Third, the low measurement quality of behavioral phenotypes in large datasets is a limitation that 

is the result of a trade-off between sample size and measurement accuracy, both of which are 

costly. While using a crude measure of a construct in a very large sample often allows obtaining 

greater statistical power than a perfect measure in a small sample (Okbay, Baselmans, et al. 

2016), measurement error leads to attenuated (standardized) effect size estimates. We addressed 

this challenge by reporting disattenuated effects that divided sample estimates by the retest 

reliability of the cognitive measures.  

 

Fourth, it is likely that structural differences in specific brain regions differentially contribute to 

individual differences in cognitive performance, over and above what is captured by TBV. Of 

note, despite a strong correlation between sex and TBV in our sample (r=.62), all of the cognitive 

measures in our sample showed sex differences that were meager (Table S1), suggesting the 

possibility that sex differences in other brain characteristics compensate for the discrepancy in 

TBV (e.g., females have greater cortical thickness; Ritchie et al. 2017).  

 

Fifth, the relationship between anatomical brain features and cognitive performance is likely 

mediated by neural processes that are better captured by measures of functional brain activity 

rather than volumetric measurements. Furthermore, many distinct mental processes (e.g., 

attention and memory) contribute to performance in intelligence tests. Therefore, our 

understanding of how individual differences in cognition arise may benefit greatly from more 

detailed, possibly non-linear, mappings between anatomical and functional brain measures and 

individual differences in distinct mental capacities. 
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Finally, further theoretical accounts for what the association between TBV and intelligence might 

imply about the evolution of human intelligence are needed (e.g., González-Forero and Gardner 

2018). Many previous investigations have been motivated by an implicit assumption that humans 

have particularly large brains and are also exceptionally cognitively flexible, relative to other 

species (Gonda, Herczeg, and Merilä 2013). However, there are no agreeable means to quantify 

intelligence between species, and although some recent efforts reported cross-species 

correlations between TBV and cognitive traits such as self-control (MacLean et al. 2014) and 

problem-solving (Benson-Amram et al. 2016), this emerging literature is in its early days, and is 

not without controversies (Kabadayi et al. 2016). Furthermore, humans are by no means the 

species with the largest brain size (cetaceans and elephants have much larger brains), brain to 

body size ratio, or relative number of neurons, and empirical evidence suggests that our species 

is also not superior when it comes to various cognitive phenotypes, including working memory 

(Inoue and Matsuzawa 2007). 

 

We hope that future studies will shed further light on how individual differences in cognitive 

capacities arise by exploring the associations between cognitive abilities and additional 

biomarkers (such as functional brain measures), as well as their interactions with environmental 

conditions.  
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