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ScienceDirect
Recent advances in systems neuroscience have solidified the

view that many cognitive processes are supported by dynamic

interactions within and between large-scale brain networks.

Here we synthesize this research, highlighting dynamic

network interactions supporting a less explored aspect of

cognition with important clinical relevance: internally-oriented

cognition. We first present a brief overview of established

resting-state networks, focusing on those supporting

internally-oriented cognition, as well as those involved in

dynamic control. We then discuss recent empirical work

emphasizing that many cognitive tasks involving internally-

oriented processes — such as mind-wandering, prospection,

and creative thinking — rely on dynamic interactions within and

between large-scale networks. Our aim is to provide a

snapshot of emerging trends and future directions in an

important aspect of human cognition.
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Introduction
The last several decades of neuroscience research have

witnessed a sea change in our understanding of systems

neuroscience, from early conceptualizations of brain or-

ganization as a collection of isolated modular regions, to

more recent views highlighting dynamic interactions among

brain regions and large-scale brain systems (see [1�]).
Much of this insight in recent years can be attributed

to the development of resting state functional connectivity
MRI (rs-fcMRI), a technique that measures correlated

patterns of fMRI activity across brain regions during

extended periods of awake rest [2�]. A basic principle

of rs-fcMRI is that brain regions that share anatomical

and/or functional properties exhibit similar patterns of
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fMRI activity fluctuations, and consequently cluster to-

gether into large-scale brain systems [2�,3] (Figure 1a,b).

Indeed, many studies have shown convergence between

brain systems identified from rs-fcMRI and patterns of

anatomical connectivity as revealed from diffusion tensor

imaging (DTI) [4] and anatomical tract tracing [5]. Al-

though several investigations using rs-fcMRI have

revealed separable resting-state networks (RSNs) that

support distinct cognitive domains [6–8], more recent

approaches highlight the flexible nature of the brain, with

a growing appreciation that resting state networks interact

with each other in a dynamic fashion on multiple time-

scales [9��].

Here we synthesize research on brain network interactions

supporting attention and cognition, and their dynamic

regulation. Although most existing research has character-

ized networks supporting externally-oriented attention

and cognition (e.g., [10]), we focus on a less established

topic that has garnered considerable interest in recent years

because of its relevance to mental health: internally-ori-

ented attention and cognition [11], encompassing one’s

thoughts, memories, emotions, and other internal repre-

sentations. We first present a brief overview of established

resting-state networks, focusing on default-mode and lim-

bic networks, as well as those involved in dynamic control

of externally-oriented and internally-oriented cognition.

Then we highlight recent empirical work emphasizing that

many cognitive tasks involving aspects of internally-ori-

ented cognition — such as unconstrained rest and mind-

wandering, prospective planning and anxious apprehen-

sion, and creative thinking — rely on dynamic interactions

within and between these large-scale networks. Our hope

is that highlighting this interactive framework will help

newcomers to the field of systems neuroscience gain a

snapshot of emerging trends and future directions in an

important aspect of human cognition.

Anatomy and function of large-scale brain
networks
The idea that the brain is best characterized across multiple

levels of analysis as an interactive map of connections is the

major tenet of a field of inquiry known as connectomics [12].

At the systems level, structural and functional connectivity

techniques have provided strong support for the interactive

nature of the brain. Despite use of different subject sam-

ples, scanner sequences, seed regions, and analysis tech-

niques across studies, a remarkably consistent set of large-

scale networks has emerged in recent years. Below we

summarize a common seven-network solution to resting
www.sciencedirect.com
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Large-scale resting-state networks and their between-network relationships. (a) Six common large-scale resting-state brain networks. Each outer

map shows the functional connectivity of a small seed region marked by a dark circle (figure adapted with permission from [3,8]). Note: limbic

network omitted from original figure. (b) A pairwise correlation matrix between a seven-cluster network solution similar to (a) reveals functional

interactions between networks (figure adapted with permission from [13]). Note: the ‘language network’ overlaps strongly with default and limbic

networks.
state connectivity approaches [6–8,13], and discuss each

network’s hypothesized functions in external and internal

attention, and dynamic control.

Networks supporting externally-oriented cognition

Some of the most evolutionarily primitive and stable

brain networks include those that support attention to,

and interaction with, the external environment. These

networks include sensory networks such as the visual
network (including predominantly V1–V3) [14], which

can be further parcellated into central and peripheral

systems, and the somatomotor network (including primary

motor and premotor cortex, and primary sensory cortex)

contributing to movement and touch [15]. The dorsal
attention network (DAN) regulates sensory networks in a

top-down manner, enabling deliberate attention to visual

stimuli and spatial locations [16]. The DAN includes a

posterior frontal region called the frontal eye fields, the

superior parietal lobule, and the middle temporal (MT+)

extrastriate area. These three large-scale networks are

positively correlated at rest [13], and interact during many

externally-oriented tasks (see [17]).

Networks supporting internally-oriented cognition

Although attention is often directed towards the external

environment, humans spend a great deal of time turning

their attention inwards, towards their thoughts, memories,

emotions and other internal representations [18]. Net-

works supporting internally-oriented cognition are less well-

characterized than those supporting externally-oriented
www.sciencedirect.com 
cognition, and this area marks a rapidly growing avenue

of research in recent years [19�]. Existing work points to the

role of the brain’s default network (DN; or default mode
network) and the nearby limbic network in key aspects of

internally-oriented cognition [11]. Although the DN was

traditionally referred to as the ‘task-negative network’ be-

cause of its common deactivation during externally-directed

tasks, recent analyses show that the DN is best characterized

not by its opposition to a task, but by the self-generated

mental content that it supports [20,21]. The DN includes

cortical, subcortical and cerebellar regions that become

engaged when cognition unfolds independent of current

perceptual stimuli (such as during the ‘resting state),’ as well

as when self-generated operations are spontaneously or

deliberately performed on external stimuli [19�].

Resting state fcMRI and clustering approaches applied to

DN activity indicate that the DN can be parcellated into

at least three subsystems: a ventrally-positioned medial
temporal lobe (MT) subsystem, a more dorsally-positioned

dorsal medial (DM) subsystem, and a centrally-positioned

core [22]. The MTL subsystem plays an important role in

episodic retrieval and memory-based construction (in-

cluding imagination and future thinking), and may allow

spontaneous thoughts to emerge [6,23]. The DM subsys-

tem becomes engaged during more abstract processes,

such as when individuals meta-cognitively reflect on their

thoughts and infer the mental states of other people

[19�,24]. Both subsystems are highly interconnected with

the DN CORE, a hub-like subsystem including the
Current Opinion in Neurobiology 2016, 40:86–93
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Figure 2
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anterior MPFC, posterior cingulate, and dorsal angular

gyrus that activates in response to a broad range of

internal, often self-related tasks [19�]. These findings

suggest a role of the DN CORE in broad self-generated

functions, including computing the self-relevant nature of

internal and external information.

The nearby limbic network includes regions such as sub-

genual anterior cingulate cortex and the amygdala that

often couple with — and are sometimes considered part

of — the DN [13,25]. This network activates when indi-

viduals engage in a wide range of emotional processes

ranging from receipt of reward [26], to punishment [27],

and activity in this network is dysfunctional in mood and

anxiety disorders [28].

Networks supporting dynamic control of externally-

oriented and internally-oriented cognition

The salience network (SN) and frontoparietal control network
(FPN) interface with external and internal attention net-

works, and are considered important brain-wide hubs [29].

The salience network appears to partially overlap with the

nearby ventral attention network, thought to play a role in

stimulus-driven external attention [16]. The broader sa-

lience network also includes anterior insula and dorsal ACC

regions often linked to salient emotions, leading some

researchers to propose a broader role of the salience net-

work in bottom-up attention to external and internal infor-

mation [30�]. Information deemed to be perceptually or

emotionally salient often influences subsequent cognitive

processing, and initial studies suggest the salience network

couples with the FPN when attention to salient information

must be up-regulated in a top-down fashion [30�,31,32].

The FPN is widely considered to play a role in deliberate

attentional control, and its connectivity to the DAN and

DN varies dynamically in a task-dependent manner (see

below). The FPN may be subdivided into central execu-

tive (including dorsal lateral PFC, anterior inferior parietal

lobule, and dorsal ACC/pre-SMA) and cingulo-opercular

(including anterior insula/frontal operculum and rostral

lateral PFC) subsystems, which may support adaptive

and stable forms of control [33].

Large-scale network interactions during
internally-guided tasks
Though the networks described above likely make distinct

contributions to internally-oriented and externally-orient-

ed cognition, the precise nature of those contributions can

be difficult to pinpoint because large-scale networks can

reconfigure and dynamically interact in a time-dependent

and context-dependent manner [9��,34,35]. The dynamic

properties of the brain are perhaps most elusive during

internally-guided tasks, which encourage self-generated

processes that often vary within and between individuals in

ways that may not be easily detectible. Below we highlight

initial evidence for dynamic network coupling during three
Current Opinion in Neurobiology 2016, 40:86–93 
internally-guided contexts: unconstrained periods of rest

and mind-wandering, prospective planning and anxious

apprehension, and creative thinking.

Unconstrained rest and mind-wandering

In the absence of constrained tasks, the mind has a

tendency to wander about, from the sights and sounds

of the external environment, to internal musings — some

mundane, others significant in nature [11,36]. Adopting

measures of dynamic connectivity such as sliding window

correlations to extended periods of rest reveal remarkable

variability in the correlation between regions over time

[37]. Indeed, brain regions or networks that may be

weakly or negatively correlated during one window of

time may be strongly positively correlated during another

[37]. Even static measures of resting state networks vary

within-subjects with respect to the nature of the internal

and external cognitive state [3,38] and between-subjects
with respect to individual and group differences in level

of consciousness [39], frequency of mind-wandering

[40�,41], and content of thought [42–44]. These findings

raise the possibility that the mental flexibility inherent to

unconstrained states may partly shape the dynamics of

large-scale networks at rest [45]. Supporting this hypothe-

sis, individuals who mind-wander to a greater degree ex-

hibit more dynamic variability in network correlations

within the DN [40�] (Figure 2), while depressed individuals
www.sciencedirect.com
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(particularly those with high levels of rumination) exhibit

less dynamic variability amongst a similar set of DN regions

[46��].

Although unconstrained tasks may maximize mind-wan-

dering behavior, the mind also wanders to off-task topics

during experimentally-constrained tasks [47]. Although

strong links have been drawn between mind-wandering

and activation in brain regions comprising the DN, mind-

wandering also appears to consistently recruit other brain

regions outside of the DN, particularly regions compris-

ing the frontoparietal network, salience, and sensory

cortices [48�]. Overt shifts in attention back to the task

at hand can subsequently lead to reconfiguration of brain

networks to support focused attention [49]. How the

various large-scale networks involved in mind-wandering
Figure 3
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and reorienting of attention dynamically unfold remains

an important unexplored question.

Prospective planning and anxious apprehension

Many studies analyzing the content of the wandering

mind observe a future-oriented, or prospective, bias to

one’s thoughts (reviewed in [19�]). However, while

mind-wandering reflects spontaneous fluctuations in

mental content, prospective thoughts can also be elicited

using top-down mechanisms, and a growing task literature

reveals that the brain networks supporting prospective

thinking overlap with those supporting retrospective

thinking (i.e. memory; [50]). There is some suggestion

that brain networks evoked during prospective planning

dynamically change within an imaginative future episode

(i.e. when constructing versus elaborating on an imagined
AB Plan
VS Plan

Default Network Dorsal Attention Network

(b)
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nd visuospatial planning. (a) Internally-oriented and externally-oriented

 networks, but common involvement of the frontoparietal attention

g autobiographical prospective planning (AB), and for negative
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Current Opinion in Neurobiology 2016, 40:86–93



90 Systems neuroscience

Figure 4
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The posterior cingulate cortex dynamically changes its functional coupling in a time-dependent manner. Early stages of performance on a

divergent thinking task (generating possible solutions to an open-ended problem > naming object characteristics) shows increased coupling

between DN and salience network regions, while later stages exhibit increased coupling between DN and FPN regions.

Source: figure adapted with permission from [57�].
scenario [51]), and across prospective task contexts (i.e.

[52]). For example, whereas autobiographical planning is

associated with positive coupling between the FPN and

DN [52], coupling between these networks is replaced by

FPN–DAN coupling when the prospective task is visuo-

spatial in nature [52] (Figure 3).

Dynamic connectivity is also evident in different stages of

prospective thinking: simulating the step-by-step pro-

cesses required to reach a goal involves coupling between

the DN and FPN, while simulating the events associated

with achieving the goal involve coupling between the DN

and limbic networks [53�]. Thus, growing evidence sug-

gests the brain dynamically reconfigures its connectivity

patterns dependent on the mental processes and contents

of prospective thinking. Of note, while the above studies

explore the dynamic underpinnings of imagining positive

future outcomes such as achieving a goal, the brain also

appears to reconfigure in a dynamic fashion when imag-

ining negative outcomes, such as upcoming shock [54�],
pain [55], or social evaluative threat [56].

Creative thinking

Like mind-wandering, creativity encourages flexible flow

of thoughts, while requiring stable guidance to hone in on

a creative idea, as is the case in prospective planning.

Flexible flow of thoughts is especially evident in the

initial stages of the creative process. In the context of a

divergent thinking task, which involves generating sev-

eral possible solutions to an open-ended problem, early

stages (i.e., flexible flow of thoughts, detecting useful

information potentially derived from long-term memory)

involve increased coupling between DN and the

salience network regions, while later stages (i.e., honing
Current Opinion in Neurobiology 2016, 40:86–93 
in, elaboration, and evaluation of the solution) exhibit

increased coupling between DN and FPN regions [57�]
(Figure 4). Similarly, idea elaboration [58] and poetry

evaluation [59] are associated with increased coupling of

DN and FPN regions. Likewise, people with high diver-

gent thinking ability show increased resting state cou-

pling between DN and left inferior frontal gyrus, a region

of the FPN [60].

Dynamic connectivity between resting-state networks

may also depend on the emotional content of the creative

task: musical improvisation with emotional context

involves coupling between the DN and FPN, while

constraining musical performance to specific pitch sets

(no emotional context) involves coupling between FPN

and several motor control regions [61]. In this context,

FPN may regulate top-down control over generative

processes of the DN network during emotionally based

improvisation.

Although generating creative solutions to open-ended

problems is one of the most widely used assessments

of creativity, semantic distance has also been considered

the hallmark of creative cognition, where increased se-

mantic distance is associated with increased coupling

between regions of the DN and the FPN [62]. Thus

compelling evidence from various assessments of creativ-

ity suggests creative thought, especially its later stages,

may benefit from the dynamic cooperation of DN and

FPN regions.

Summary
In recent years, parallel lines of research in resting state

connectivity and task-related fMRI have emphasized
www.sciencedirect.com
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the importance of a connectomics, or network-centered,

approach to understanding brain function [63]. Our aim

for this manuscript has been to synthesize this literature

by focusing on the contributions of large-scale brain

networks to internally-guided processes ranging from

mind-wandering to creativity. We have shown that while

it may be difficult to infer mental states from static

patterns of connectivity, dynamic connectivity

approaches offer great promise for tracking human cog-

nition because our thoughts and attention often vary over

time, shifting focus between the external world and our

inner mental lives [45]. Human evolution appeared to

have favored a flexible introspective mind, and incorpo-

rating the study of brain dynamics into future research in

systems neuroscience may be the key to unlocking its

mysterious contents.
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