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The refinement of localization of intelligence in the human brain is converging onto a distributed network
that broadly conforms to the Parieto-Frontal Integration Theory (P-FIT). While this theory has received support
in the neuroimaging literature, no functional magnetic resonance imaging study to date has conducted a
whole-brain network-wise examination of the changes during engagement in tasks that are reliable measures
of general intelligence (e.g., Raven's Progressive Matrices Test; RPM). Seventy-nine healthy subjects were
scanned while solving RPM problems and during rest. Functional networks were extracted from the RPM and
resting state data using Independent Component Analysis. Twenty-nine networks were identified, 26 of which
were detected in both conditions. Fourteen networks were significantly correlated with the RPM task. The
networks' spatial maps and functional connectivity measures at 3 frequency levels (low, medium, & high)
were compared between the RPM and rest conditions. The regions involved in the networks that were found
to be task related were consistent with the P-FIT, localizing to the bilateral medial frontal and parietal regions,
right superior frontal lobule, and the right cingulate gyrus. Functional connectivity in multiple component
pairs was differentially affected across all frequency levels during the RPM task. Our findings demonstrate that
functional brain networks are more stable than previously thought, and maintain their general features across
resting state and engagement in a complex cognitive task. The described spatial and functional connectivity
alterations that such components undergo during fluid reasoning provide a network-wise framework of the
P-FIT that can be valuable for further, network based, neuroimaging inquiries regarding the neural underpinnings

of intelligence.

© 2014 Published by Elsevier Inc.

Introduction

Modern neuroimaging techniques have allowed for increasingly
fine-grained inquiries regarding the structural and functional brain
correlates of human intelligence. Such techniques have evolved from
early focus on discrete regional associations (Andreasen et al., 1993)
to increasingly sophisticated inquiries that regard the brain as a
network (van den Heuvel et al., 2009). While most early studies focused
on the frontal lobes as the primary locus of human intelligence (Duncan
et al., 2000; Gray et al., 2003), a review of structural and task-related
functional neuroimaging literature suggested that the integrity of a
distributed network involving the parietal and frontal regions best
accounted for individual differences in intelligence (P-FIT; Jung and
Haier, 2007). The theory has been supported by multiple brain lesion
studies and analyses of healthy controls’ cognitive data across different
neuroimaging modalities (Colom et al., 2009; Deary et al., 2010;
Gldscher et al., 2010; Li et al., 2009; Song et al., 2008). While the P-FIT
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has received substantial attention from the intelligence community
(Barbey et al., 2012; Deary, 2012; Langer et al., 2012; Luders et al.,
2009), the broad nature of the theory's scope leaves much ambiguity
for further investigations. This study thus aimed to test the P-FIT by
isolating the specific functional brain networks that may contribute to
it, and examine the changes such networks undergo in terms of their
spatial distributions and inter-network connection strengths during a
fluid reasoning task.

Our understanding of whole-brain processes has progressed sub-
stantially since the discovery of inter-hemispheric functional correla-
tions in the motor cortex (Biswal et al, 1995). The existence of
numerous functional brain networks, or brain regions that exhibit
high degrees of intrinsic functional coherence, has since been confirmed
using various approaches (Allen et al., 2012b). Analyses of such
networks have demonstrated significant relationships between
their various properties and cognitive functioning, providing a viable
approach for investigating and detecting functional abnormalities in
neurological and psychiatric disorders (Garrity et al., 2007; Jafri et al.,
2008; Vakhtin et al., 2013). The network-wise approach produces read-
ily interpretable results, and is a useful tool for establishing a framework
for better understanding human cognition (Bressler and Menon, 2010).
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Using independent component analysis (ICA; Bell and Sejnowski,
1995), the spatial distributions of resting state functional brain
networks have been shown to be stable across multiple independent
functional magnetic resonance imaging (fMRI) data sets, with their
functions having been inferred using previously established roles of
the involved anatomical regions (Allen et al., 2012a, 2012b). The spatial
changes that such networks undergo as a response to cognitive engage-
ment, however, have not been studied extensively. While maintaining
their general features, multiple ICA-derived networks have previously
been shown to alter their spatial distributions during an auditory
oddball task (Calhoun et al., 2008). The robustness of such components
during engagement in complex tasks, however, is yet to be investigated.

The Raven's Progressive Matrices Test (RPM; Raven, 2000) has been
determined to be one of the best tools for measuring fluid reasoning
ability, which in turn is highly related to general intelligence (Snow
et al.,, 1984). The task is based on visual stimuli, overcoming the
challenges presented by using verbally mediated tasks to measure
intelligence in multicultural samples. Previous neuroimaging studies
have revealed that fluid cognitive processes induced by RPM activate
areas consistent with the P-FIT, localizing to the bilateral frontal and
parietal regions (Duncan et al., 2000; Haier et al., 1988; Kroger et al.,
2002; Prabhakaran et al., 1997). We therefore considered the RPM
task as a suitable candidate for inducing activity within the functional
brain networks that contribute to general intelligence and comparing
them to their resting states. Since the performance on measures that
assess fluid reasoning (e.g., Ravens Progressive Matrices) represents
relatively complex cognitive processes, we hypothesized that
widespread spatial redistributions of functional networks would
be observed during fluid reasoning when compared to during rest.

Given the widespread spatial effects that cognitive load is able to
induce in functional brain networks, we expected parallel changes in
levels of functional network connectivity (FNC) between different
pairs of networks. While parieto-frontal connectivity has been asso-
ciated with higher levels of intelligence in both adults and children
(Langeslag et al., 2013; Song et al., 2008), the specific networks
involved have not been identified. Importantly, we hypothesized
that such changes in FNC between rest and fluid reasoning tasks
would not be consistent across different frequencies of the networks'
time courses. While it has been shown that functional brain
networks primarily exhibit low frequency oscillations and tend to
rely on these frequencies in their connections to each other (Cordes
et al., 2000), such effects appear to be predominant in sensorimotor,
visual, language, and auditory networks. Since such networks are of
little interest in our goal of investigating complex cognitive processes
involved in fluid reasoning, we hypothesized that FNC in cognitive,
default-mode (DMN), and attention networks may not be limited to
these low frequencies during complex cognitive tasks. Functional con-
nectivity changes evoked by fluid reasoning were therefore explored
across the full spectrum by examining low, medium, and high frequen-
cy bands. The main purpose of the FNC analysis was to isolate the net-
works and frequencies that contribute to the integration of the frontal
and parietal regions, which would subsequently be used as stepping
stones to investigate their relationships with individual differences in
fluid reasoning ability.

Methods

Seventy-nine subjects (46 males, 21.7 4 3.1 years old) were recruit-
ed for the study from the University of New Mexico (UNM), Albuquer-
que, NM, USA. Prior to study enrollment, each participant signed a
consent form explaining the procedures and their potential risks.
The study and consent form were approved by the UNM Institutional
Review Board. All subjects were screened for and excluded if they
reported any past major head injuries, psychiatric or neurological
disorders, substance abuse, and intake of any psychoactive medications.

The fMRI data were collected using a 3-T Siemens Trio scanner at the
Mind Research Network (MRN), Albuquerque, NM. Each participant
went through 3 sessions in the scanner: a resting state scan and 2
sessions while solving problems from the Standard and Advanced
Raven's Progressive Matrices Test (Raven, 1990). Ten matrices were
pseudorandomly sampled from six versions of the test, including all
difficulty levels of the items, for each RPM session. The RPM sessions
consisted of 10 problems each, with each matrix presented at the center
of the screen and four possible answer choices below. Subjects made
selections by pressing one of four buttons corresponding to the index
and middle finger of both hands. Each problem was presented for
15 s, with a standard 15-second interstimulus interval maintained
throughout each block, during which a cross hair was presented. All
participants went through 2 training sessions on the RPM task before
their fMRI scans, with none of the problems being presented more
than once. During the resting state scan, participants were instructed
to stare at a fixation cross presented on the screen in front of them,
relax, and think of nothing in particular.

The T2*-weighted functional images were collected using a
gradient-echo echo planar imaging sequence with an echo time of
29 ms, repetition time of 2 s, flip angle of 75°, slice thickness of
3.5 mm, distance factor of 30%, field of view of 240 mm, matrix size
of 64 x 64 voxels, and voxel size of 3.8 mm x 3.8 mm x 3.5 mm.
A total of 5 min, 16 s of resting state data were collected, while
each RPM scan lasted 5 min and 50 s. The resulting data were slice
timing-corrected and smoothed with a 10 mm kernel using the
automated neuroimaging pipeline set up at MRN, which is described
in further detail elsewhere (Bockholt et al., 2010; Scott et al., 2011).
Data from subjects who moved more than 3.5 mm during any single
inter-scan period were excluded from further analyses.

Spatial independent component analysis was used to examine the
temporal correlations in signal fluctuations between multiple brain
regions, producing a set of independent components with high intrinsic
temporal coherences that were maximally independent in space. The
algorithm utilizes blind source separation to reduce the data to a
number of components specified by the user. Its data-driven nature
makes it applicable to resting state scans, which do not possess any tem-
poral information necessary for conventional fMRI analyses. We used
the Group ICA of fMRI Toolbox (GIFT; http://mialab.mrn.org/software)
to separately extract 75 components from the resting state and task
sessions, producing a whole-head spatial t-map and a signal time course
for each one. Non-artifactual functional brain networks were then se-
lected from the resulting data sets according to previously identified
components (Allen et al., 2011; Smith et al., 2009), and all further
analyses were concerned solely with such networks. Spatial cross-
correlations of networks were performed between resting and RPM
sessions in order to detect networks present in both conditions,
deeming a network stable if its Pearson's r was greater or equal to 0.5.

Using the Statistical Parametric Toolbox 8 (SPM8), a unique be-
havioral block design was created for each subject and RPM session,
modeling the time interval during which the problem was presented
on the screen. The model was convolved with the canonical hemody-
namic response function, and all the subjects' data were horizontally
concatenated within each session. Likewise, each network's time
course was horizontally concatenated across subjects in each ses-
sion, and the two variables were entered into a regression analysis
for all networks in every RPM session. Components were classified
as task related if their time courses were significantly correlated
with the behavioral model (FDR p = 0.001).

All networks' whole-head spatial maps from each session (rest,
RPM1, and RPM2) were z-scaled and entered into a within-subject
ANOVA to investigate the effects of RPM task on networks' spatial
distributions. A spatial mask was used in the analysis, and was
obtained by entering all 3 sessions' data from each network into a
1 sample t test and applying an FDR-corrected threshold of p = 1e—10
to the results.
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Functional connectivity was examined in all possible pairs of
functional networks. Three band-pass filters were first applied to
each network's time course, producing low (0.01-0.083 Hz), medium
(0.084-0.166 Hz), and high (0.167-0.25 Hz) frequency datasets.
We utilized the Functional Connectivity Toolbox (http://mialab.mrn.
org/software) to obtain a correlation coefficient for each network
pair's low, medium, and high frequency connectivity in every session
and subject. For every network pair, the correlation coefficients were
Fisher z-transformed and entered into a mixed linear model with
session (rest, RPM1, RPM2) and frequency (low, medium, high) as
fixed factors and subjects as random factors.

Results

The subjects averaged accuracy rates of .68 + .02 and 0.57 + .02
on the first and second RPM sessions, respectively. A subsequent paired
t test revealed the difference in performance between the RPM sessions
to be significant (t (78) = 5.41, p < 0.001). Since the difficulty levels
of the RPM problem sets were the same, this effect is likely attributable
to fatigue over successive sessions. Since we were not concerned
with performance-correlated brain activity in this study, however,
we did not account for this effect in the subsequent analyses of
individual networks.

Twenty-nine functional brain networks were identified in the set
of 75 independent components produced by GIFT (Fig. 1), and were
subsequently classified according to function using previous ICA lit-
erature on the anatomical regions involved. The networks included
attentional (A1-A6), cognitive (C1-C6), default-mode (D1-D3),
sensorimotor (S1-S6), visual (V1-V6), auditory (AU), and basal
ganglia (BG). Cross-correlations of the network spatial maps between
resting state and RPM sessions revealed that 26 of the networks were
present during both conditions. One sensorimotor network that was

Attention

Rest RPM RPM - Rest

‘AL (L O, 4
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Cognitive Control

Rest RPM RPM - Rest Rest

Visual
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detected during rest was not identified during task performance.
Likewise, 2 cognitive networks were active only during the task, but
not rest. Ten networks' time courses were significantly correlated
with their respective behavioral models and thus classified as
task-related (FDR p = 0.001).

The analysis of networks' spatial distributions revealed significant
effects of task in contrast to resting state in multiple components, both
related and unrelated to the RPM task. These spatial effects are present-
ed in Fig. 1 along with the networks' distributions in each condition. The
specific regions involved can be found in the Supplementary material.
The functional connectivity analysis revealed significant interactions of
session and frequency in 14 task-related network pairs (Fig. 2). The
interactions were examined in terms of simple effects of session on
functional connectivity within each frequency band. The results indicat-
ed that increases in FNC during fluid reasoning varied across frequencies
in different component pairs (Fig. 3). Additional main effects of session
were detected in 5 pairs of networks, 3 of which were positive (Fig. 3).
The integration of 2 interconnected network systems appeared to be
activated by the RPM task: V2-A1-A3-D1 and V2-C2-A2-V1.

Discussion

This is the first fMRI study to contrast networks' spatial distributions
and functional connectivity data collected during resting state and
engagement in Raven's Progressive Matrices test, a classic measure
of general intelligence. We found a discrete set of networks to be
associated with fluid reasoning, which largely overlapped regions
first identified in the Parieto-Frontal Integration Theory, including
the dorsolateral prefrontal cortex, inferior and superior parietal lobule,
anterior cingulate, and regions within the temporal and occipital
lobes. One of the main weaknesses of the original theory, that it did
not explicitly address the network characteristics of the numerous

Default-Mode
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Fig. 1. Twenty-nine networks were identified: 6 attentional (A1-A6), 6 cognitive control (C1-C6), 6 visual (V1-V6), 6 sensorimotor (S1-S6), 3 default-mode (D1-D3), auditory (AU), and
the basal ganglia (BG). Twenty-six of the networks were detected in both resting state and Raven's Progressive Matrices Test (RPM) conditions. The networks' spatial distributions during
rest and performance of Raven's Progressive Matrices task (RPM) are plotted as 1 sample ¢ test statistics on standard-space Montreal Neurological Institute 152 volumes, with warm colors
representing intrinsic network coherence values. The RPM-rest contrasts are presented for each network as well, with warm and cool colors marking areas of significant increases and
decreases, respectively, in intrinsic network coherences during the RPM task, as revealed by the repeated measures ANOVA (FDR p = 0.001). Networks were functionally classified
and ranked according to their degrees of task-relatedness. (*) denotes networks that were significantly related to the RPM task (FDR p = 0.001).
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Fig. 2. Functional network connectivity results. The session x frequency interaction (left) was significant in 14 pairs of networks (FDR p = 0.001), which are marked by a white
dot. Session effects (middle) were detected in 5 pairs of networks (FDR p = 0.001), with each significant bin in which an interaction was not observed marked by a white dot.
Frequency effects (right) were found in 8 pairs (FDR p = 0.001), with the white dots marking those in which the interaction was not significant. (*) indicates that the network

was significantly related to the task.

regions identified, is now addressed using ICA, supporting underlying
network characteristics of brain organization involved in fluid
reasoning ability. While attention and cognitive networks were
found to be task related, we also found several sensorimotor, visual,
and a DMN to be significantly related to the RPM task. Interestingly,
all frequency bands (low, medium, and high) were represented in sig-
nificant functional connectivity interactions, with two distinct network
systems being activated by the RPM task: visual-attention-DMN and
visual-cognitive-attention.

Most of the functional networks derived from the resting state
data were also present during the RPM task, with 26 networks being
detected in both conditions. Such networks exhibited high degrees
of spatial correlations between resting state and RPM scans, yet demon-
strated significant levels of plasticity in their distributions, as seen in the
spatial results. These networks are thus able to alter their activity levels
and spatial distributions, while preserving their general spatial features
even during complex problem solving. Oddly, one of the networks

a5

Fig. 3. Functional network connectivity differences induced by the RPM task. Solid lines
represent increases in FNC, while the dashed lines represent FNC decreases as networks
switch from resting state to performing the task. The frequencies in which such differences
were observed are represented by the colors red (high), blue (medium), and green (low).

observed only during rest was classified as a sensorimotor component.
Given component S6's spatial distribution and low relatedness to the
task, we speculate that the network may be responsible for sensory
processes, explaining the network's activity during the resting state
scan, often associated with self-referential thoughts, but not while
focusing on the RPM task.

The C1 component, on the other hand, was significantly related to
the task and detected during the RPM task, but not during rest. Given
that the component's main functional regions included the bilateral
medial frontal and superior temporal gyri, it appears to be consistent
with the frontal and temporal regions proposed by the P-FIT to modu-
late performance on intelligence measures. In addition, the superior
temporal gyri have been implicated to play a role in integration of pre-
vious task actions and outcomes with future decision-making strategies
(Paulus et al.,, 2005). An important limitation to our inferences about
the networks that were not detected in both conditions is that their
responses to cognitive load in comparison to rest could not be deter-
mined. Although the C1 network had the highest degree of task related-
ness, we were not able to include it in the spatial or FNC analyses.
Further investigations of the C1 network should be undertaken in
order to establish the extent to which, if any, its coherence during
fluid reasoning may be correlated with other aptitudes. We note
that the C3 network was also specific to the RPM condition, but not
necessarily of interest to this study due to the fact that it was not
significantly related to the task.

While the task related networks exhibited the most widespread
changes in their spatial distributions during the RPM task, multiple
other networks were affected by the RPM task to some degree. In fact,
the auditory network was the only one in which no spatial effects
were detected. The widespread effects of a complex task like RPM
were expected, and the functional classification of ICA-derived
networks and their task relatedness measures aided us in focusing
on the components relevant to fluid reasoning.

The regions involved in the networks that were found to be task re-
lated were broadly consistent with the P-FIT. Task related attentional
networks localized to the bilateral medial frontal and parietal regions,
right superior frontal lobule, and the right cingulate gyrus. Cognitive
network C2 involves the right and left lateral frontal regions, which
have previously been shown to be involved in decision-making process-
es (Duncan and Owen, 2000). Two sensorimotor networks were task-
related, with the left motor strip being the main contributor to the S1
component, likely due to the subjects' use of the right hand when
indicating responses to problems. Two visual networks were related
to the task, and were localized to the bilateral occipital gyri. Finally,

only one DMN was significantly related to the RPM task, spanning the :

bilateral precuneus. Interestingly, the precuneus has been associated

Please cite this article as: Vakhtin, A.A,, et al., Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence,
Neurolmage (2014), http://dx.doi.org/10.1016/j.neuroimage.2014.09.055

282
283
284
285
286
287
288
289
290
291
292

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323


image of Fig.�2
image of Fig.�3
http://dx.doi.org/10.1016/j.neuroimage.2014.09.055

328
329
330

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

358
359
360
361
362
363
364
365
366
367
368
369
370

375

Q4
377
378
379
380

382

383
384
385

386
387

AA. Vakhtin et al. / Neurolmage xxx (2014) Xxx-XXX 5

with visualization and imagination ability (Hassabis et al., 2007), likely
important to visuo-spatial processing demands of the RPM task.

The functional connectivity analysis between task related networks
revealed that the components utilize a broad range of frequencies
in their integration during cognitive load, with significant positive
and negative changes observed in low, medium, and high frequencies.
Additionally, the V2 network emerged as a hub between two distinct
clusters of networks that exhibited increases in FNC: V2-A1-A3-D1
and V2-C2-A2-V1. Given that the cognitive frontal network C2 is in
the latter cluster, we speculate that it may be the network group
responsible for the decision-making processes during fluid reasoning.
Further analyses could investigate the relationship between variables
of interest such as IQ and the FNC changes that network pairs undergo
when switching from resting state to fluid reasoning.

There are several weaknesses associated with our approach. First,
the use of the RPM could be interpreted to bias the functional networks
towards fronto-parietal regions. However, the RPM is considered to
be the best measures of fluid reasoning ability in the psychometric
literature, and is highly correlated with other measures of intelligence
(Raven, 2000), thus making it a good proxy measure of the cognitive
construct of interest (i.e., “intelligence”). Our sample consisted of
young, healthy, college students who were likely of higher intellectual
capacity than average. Thus, the generalizability of the current results
to populations that are older, include patients with neurological
and psychiatric disorders, and who are of average or lower intellec-
tual capacity is unknown. Finally, the use of ICA might be construed
as artificially segmenting brain regions into maximally independent
networks. Two main assumptions are made with ICA: that the
sources are independent and that the distributions are non-
Gaussian. Either or both of these might be violated with respect to
functional brain imaging data. We make note that other techniques
that do not rely on maximal separation of structural or functional
brain regions have found a high correspondence between measures
of intelligence and those identified with the P-FIT. Future studies uti-
lizing other measures of “intelligence” (e.g., Wechsler Scales, “g”),
more diverse samples (e.g., younger/older, broader IQ range), and
other sophisticated analyses (e.g., graph theory) will help to determine
the veracity of our findings over time.

The findings described in this paper provide a network-wise
framework for targeting future neuroimaging analyses focusing on
fluid reasoning and general intelligence (i.e., “g”). We have isolated
the functional brain networks that are related to fluid reasoning,
which correspond to the model of intelligence proposed by the
P-FIT. The described spatial and FNC contrasts between fluid reasoning
and rest provide further insight into the network-wise P-FIT
framework, allowing for targeted examinations of aptitude correlates
with brain function in future studies.
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