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Creative cognition emerges from a complex network of interacting brain regions. This study investigated the re-
lationship between the structural organization of the human brain and aspects of creative cognition tapped by
divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented
cortical regions. This informationwas represented as a network andmetrics of connectivity organization, includ-
ing connectivity strength, clustering and communication efficiency were computed, and their relationship to in-
dividual levels of creativity was examined. Permutation testing identified significant sex differences in the
relationship between global connectivity and creativity as measured by divergent thinking tests. Females dem-
onstrated significant inverse relationships between global connectivity and creative cognition, whereas there
were no significant relationships observed inmales. Node specific analyses revealed inverse relationships across
measures of connectivity, efficiency, clustering and creative cognition inwidespread regions in females. Our find-
ings suggest that females involvemore regions of the brain in processing to produce novel ideas to solutions, per-
haps at the expense of efficiency (greater path lengths).Males, in contrast, exhibited few, relativelyweak positive
relationships across these measures. Extending recent observations of sex differences in connectome structure,
our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity under-
lying the generation of novel ideas in males and females.

Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Creative cognition is multifaceted, drawing on a wide range of men-
tal faculties that enable individuals to develop novel and useful ideas
(Stein, 1953). The process of creativity has been conceptualized as in-
volving two stages: blind variation and selective retention (Campbell,
1960). The two stages utilize different brain regions in functional mag-
netic resonance imaging (fMRI) studies, suggesting that the blind varia-
tion and selective retentionmight represent distinct cognitive processes
(Ellamil et al., 2012). Psychometrically, it is likely to be difficult to disen-
tangle these two processes (Arden et al., 2010); however, divergent
thinking has served as the primary measure most analogous to blind
variation, as it measures an individual's ability to generate many ideas
(Piffer, 2012).

Relative to the wealth of fMRI studies that have investigated diver-
gent thinking, there are relatively few studies that have addressed the
variation in underlying gray or white matter morphology and/or
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ss article under the CC BY-NC-ND lic
anatomical connectivity. Unlike other studies of cognitive abilities, in-
creased creativity has been correlated to both increases and decreases
in brain connectivity and cerebral volume elucidated through the use
of proton magnetic resonance spectroscopic imaging (1H-MRSI), diffu-
sion weighted imaging (DWI), and structural Magnetic Resonance
Imaging (sMRI) (Jung et al., 2013). Two DWI investigations have exam-
ined the relationship between divergent thinking and Fractional Anisot-
ropy (FA), a measure used to infer information about the underlying
integrity of white matter fiber tracts (Johansen-Berg and Behrens,
2009). A whole brain voxel wise analysis found that increased FA near
the bilateral prefrontal cortices, the body of the corpus callosum, the bi-
lateral basal ganglia, the bilateral temporo-parietal junction and the
right inferior parietal lobule was related to increased creative cognition
(Takeuchi et al., 2010b). Examining FA values within a skeleton of the
major white matter fiber pathways (Smith et al., 2006) Jung et al.
(2010a) found lower FA to be related to increased scores on measures
of divergent thinking within the left anterior thalamic radiation.

Studies that have examined volume and thickness of gray matter
have found both increases and decreases across widespread regions re-
lated to higher creative cognition, with increases seen in the mid-brain,
ense (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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striatum, precuneus, dosolateral prefrontal cortex (Takeuchi et al.,
2010a), superior parietal lobule (Gansler et al., 2011), posterior
cingulate and right angular gyrus (Jung et al., 2010b). Additionally,
cortical decreases related to higher creative cognition were found in
the lingual, cuneus, angular gyrus, inferior parietal, fusiform gyrus,
orbitofrontal cortex (Jung et al., 2010b) and the splenium of the corpus
callosum (Gansler et al., 2011). From these studies, it is clear that the
manifestation of creativity is associated with both excitatory and inhib-
itory relationship between cortical and subcortical regions spanning a
widespread network of brain regions (Jung et al., 2013).

From functional connectivity analysis, there is increasing evidence
showing correspondence between the regions implicated in creativity
and the regions identified as being within the default mode network
(DMN) (Jung et al., 2013). TheDMNconsists of regionswhere neural ac-
tivity is higher during the baseline state than during an experimental
task (Buckner et al., 2008; Greicius et al., 2003; Raichle et al., 2001;
Shulman et al., 1997), and includes the medial prefrontal cortex
(MPFC), medial temporal lobes (MTLs), and the posterior cingulate cor-
tex (PCC)/retropslenial cortex (RCS). Many cognitive functions have
been attributed to the DMN, including retrieval and manipulation of
past events, both personal and general, in an effort to solve problems
and develop future plans (Greicius et al., 2003). Buckner and Carroll
(2007) suggest that the DMN is important in remembering the past,
envisioning the future and considering the thoughts and perspectives
of other people, all processes that could be construed as useful to devel-
oping novel ideas within a given context (i.e., creative).

Both the functional and structural studies of divergent thinking
highlight the role of widespread variations in brain-behavioral relation-
ships associated with creative cognition, although increasing evidence
suggests that the DMN and the Executive Control Network (ECN) are
predominant (Jung et al., 2013). The methods used in the vast majority
of studies, to date, point to individual regions implicated in creativity;
relatively few examined creativity in context of the network structure
of the human brain. Instead of investigating the role of specific regions
and pathways in isolation, fiber tractography can be used to construct
and examine all of the connections in the brain, known as a connectome
(Bullmore and Sporns, 2009; Craddock et al., 2013). By representing this
information as a graph, measures of network organization can be
extracted that indicate the extent of segregation and integration of con-
nections (Rubinov and Sporns, 2010). Initial studies utilizing this ap-
proach characterized the brain as having a “small world” organization:
in other words, the brain is organized such that there is a balance be-
tween local, clustered connectivity and global, long-range connectivity
that facilitates efficient information transfer (Achard et al., 2006;
Eguiluz et al., 2005; Sporns et al., 2004; Stam and Reijneveld, 2007b;
van den Heuvel et al., 2008). The small world organization facilitates ef-
ficient information transfer via local processing within clusters that
work in conjunction with several long-distance connections (Bullmore
and Sporns, 2009; Latora and Marchiori, 2001; Watts and Strogatz,
1998a).

Small worldness is determined through the quantification of
minimum path length, the shortest path needed to move from node i
to j in a network, and clustering coefficient, the extent towhich a node's
neighbors are connected to each other (Bassett and Bullmore, 2006;
Humphries and Gurney, 2008; Watts and Strogatz, 1998b). Using simi-
lar information, Latora and Marchiori (2001) proposed a measure of
Global Efficiency that directly quantifies how efficiently information
can be exchanged over the network. Evidence emerging through the
use of both structural (diffusion weighted imaging) and functional im-
aging (fMRI, MEG) demonstrates that these measures are, in a general
sense, quantifying local processing (high clustering) with an optimum
number of long range paths (high efficiency) (Bullmore and Sporns,
2009; Stam and Reijneveld, 2007a). There is also growing interest in
how these structural networks relate to the functional networks, with
studies finding that the functional connectivity network organization
is constrained by the underlying structural organization. In other
words, the functional network can only be as efficient and clustered as
its underlying connectivity (Greicius et al., 2009; Honey et al., 2009;
van den Heuvel and Sporns, 2013a,b; van den Heuvel et al., 2009).

Individual differences in these network properties (i.e., higher effi-
ciency) have been linked tomeasures of individual differences including
intelligence (Li et al., 2009; van den Heuvel et al., 2009), and are being
increasingly used to identify how variations in network metrics relate
to cognitive dysfunction (de Haan et al., 2012; Fair et al., 2010). Several
studies have found substantial sex differences in brain connectivity,
suggesting that differential connectivity patterns may account for cog-
nitive differences (Gong et al., 2009a, 2011; Ingalhalikar et al., 2013).
While these studies posit potential cognitive differences resulting
from the differing organization of male and female brains, they did not
examine this relationship directly. Using other brain measures, such as
the greymatter andwhitematter volumes and the functional and struc-
tural connectivities, there are numerous studies identifying sex differ-
ences in the relationship between brain measures and cognitive
abilities (Gur et al., 1999), particularly with respect to higher order cog-
nition, such as intelligence (Haier et al., 2005; Jung et al., 2005;
Schmithorst, 2009; Schmithorst and Holland, 2007). In light of the re-
cent studies emphasizing sex differences in structural brain organiza-
tion and previous sex interactions in the relationship between brain
structure and cognitive ability, this study investigateswhether structur-
al network properties significantly relate to creativity and whether the
relationship between the structural connectome and creativity differ
by sex. Second, we investigate whether variations in the network prop-
erties of individual regions of the brain are predictive of divergent think-
ing and if these regions are primarily within the DMN and ECN.

Materials and methods

Participants

Participants were young adults (21.53+/−2.93 years; 59 males, 47
females) recruited by postings in various departments and classrooms
around theUniversity of NewMexico. This studywas conducted accord-
ing to the principles expressed in the Declaration of Helsinki, and was
approved by the Institutional Review Board of the University of New
Mexico. All subjects provided written informed consent before the col-
lection of data and subsequent analysis. One hundred and nineteen vol-
unteers, with no history of neurological or psychological disorder,
participated in the study. Thirteen individuals were excluded in the
data analysis due to the low quality of their neuroimaging data (i.e. mo-
tion or image artifacts), resulting in 106 human subjects for analysis.

Behavioral measures

Four divergent thinking tasks were administered: Verbal and
Drawing Creativity Tasks, Uses of Objects Test (UOT), described in detail
elsewhere (Lezak et al., 2004; Miller and Tal, 2007) and generation of
captions to New Yorker Magazine cartoons. Four independent judges
(two females, two males) ranked the DT products of each participant
using the consensual assessment technique (Amabile, 1982) from
which a “Composite Creativity Index” (CCI) was derived. The raters
were of the same cohort as the subjects (19–29; college student/
graduate). Raters were instructed to rate each subject's DT product
from 1 (lowest creativity) to 5 (highest creativity) according to their
own notion of “creativity,” and were instructed to bin rankings to con-
form to a normal distribution (e.g., 5% each 1's and 5's, 10% each 2's
and 4's, 70% 3's). Rankings for each subject were averaged across the
four measures and converted to a standard score to facilitate easy com-
parisons between FSIQ and the creativity measure, referred to as the
Composite Creativity Index (CCI). The raters had excellent inter-rater
reliabilities across the four measures of DT (i.e., CCI α = .81).

To assess general intelligences, subjects were tested with the
Wechsler Adult Inventory Scale (WAIS-III) (Wechsler, 1981). The
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WAIS battery consists of subtests that measure verbal and non-verbal
mental abilities that contribute to general intelligence. The Full Scale
Intelligence Quotient (FSIQ) was based on performance on 11 subtests
(Comprehension, Picture Arrangement, Object Assembly were not
administered).

Imaging acquisition

Imaging was obtained using a 3 Tesla Siemens Triotim MRI using a
12-channel head coil. The multiecho MPRAGE protocol was followed
to obtain the T1 image: [TE 1.64/3.5/5.36/7.22/9.08 ms; TR 2530 ms;
voxel size 1×1×1mm;192 slices; Field of View=256mm; acquisition
time 6.03]. For the diffusion weighted imaging (DWI) data echo planar
imaging was acquired: [TE 84 ms; TR 9000 ms; voxel size 2 × 2 ×
2 mm3; 72 slices; Field of View = 256 mm; 2 set of 30 diffusion direc-
tions with b= 800 s/mm2, and 5measurements with b= 0, acquisition
time 5:42].

DWI preprocessing and deterministic fiber tracking

The two sets of 30 diffusion directions and 5 b=0were concatenat-
ed to increase the signal to noise ratio (60 directions, 10 b = 0 total).
The remaining processing of theDWI images followed themethods pre-
viously described in detail (van den Heuvel and Sporns, 2011). First, dif-
fusionweighted images were realigned and registered to the first b= 0
image, and corrected for eddy-current distortions. Second, a tensor was
fitted to the diffusion profile within each voxel using a robust tensor
fitting method (Chang et al., 2005). The preferred diffusion direction
Fig. 1. Structural network reconstruction. A, First, the T1 imageswere segmented using freesurf
using deterministicfiber tracking. The number of streamlines as well as the overall integrity of t
C, for each combination of regions i and j nodes of the network, the presence of a connection w
tegrity of each of the tracts (as measured by FA) was entered into the matrix (wij). From the re
ficiency were computed.
within each voxel was computed as the principal eigenvector of the ei-
genvalue decomposition of thefitted tensor. Third, the level of fractional
anisotropy (FA) of each voxel was computed based on the eigenvalues.
Fourth, the white matter tracts of the brain networks were reconstruct-
ed by using the deterministic fiber tracking, based on the FACT (fiber as-
signment by continuous tracking) algorithmutilizing an FA threshold of
0.1 and an angular threshold of 45° (Mori and van Zijl, 2002).

T1 preprocessing

TheMPRAGE T1 images were used for anatomical references and for
the selection of the nodes of the brain network. Freesurfer was used to
classify the grey matter and white matter of the brain as well as auto-
matically segment the subcortical structures (i.e. the brain stem, thala-
mus, pallidum, caudate, putamen, accumbens, hippocampus, and
amygdala). Automatic parcellation of the reconstructed cortical surface
segmented the images into 68 distinct brain regions (V5; http://surfer.
nmr.mgh.harvard.edu/ Fig. 1a) (Fischl et al., 2004). In total, eighty-
three brain regionswere selected, representing the nodes of the individ-
ual brain networks.

FA- and NOS- weighted reconstruction of individual structural networks

Individual brain networks were modeled based on segmented brain
regions and the collection of reconstructed fiber tracts (Hagmann et al.,
2008; van den Heuvel et al., 2010). The network was mathematically
described as a graphG= (V,E), with V being the collection of 83 regions
and E the set of the reconstructed white matter pathways between
er B, the DWI data was processed and all of the possible fibers in the brain were computed
he connectionswas calculated for each of the freesurfer regions represented here as nodes.
as determined by those tracts that touched both region i and region j, and the average in-
sulting individual weighted matrices, graph metrics, such as clustering coefficient and ef-
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these regions. For each subject, the presence of a reconstructed fiber
streamline between each pair of brain regions i and jwas taken to deter-
mine the presence of a connection between region i and j (Fig. 1b). To
obtain information not only about the presence of a connection, but
also about the strength and integrity of the connection, ametric utilizing
information about the mean of the FA value was created (w), the aver-
age FA values of all included streamlines. This valuewas then entered in
the FA-weighted connectivitymatrices (G) aswij (Fig. 1c). An additional
edge weighting, number of streamlines (NOS), was used to determine
the robustness of our findings. For the NOS-weighted connectivity ma-
trices (G), wij is equal to the number of tractography streamlines
found to connect regions i and j.

Graph metrics
Graphmetrics were computed using the Brain Connectivity Toolbox

as described previously (Rubinov and Sporns, 2010). Graph metrics
were calculated separately for each of the weighted connectivity matri-
ces (FA-weighted and NOS-weighted). Weighted connectivity strength
of each node i (Si) in the network provides information about the total
level of the weighted connectivity of a node. By taking this approach,
the S weighted measure reflects both the number of connections in
the whole brain and the fidelity of those connections quantified by ei-
ther the average FA across the tracts or the NOS (Eq. (1)):

Sweighted
i ¼

X
j∈N

wij: ð1Þ

The total connection strength of the network (S) was calculated as
the sum of Si in all nodes N (Eq. (2)). For the FA weighted matrices,
this value is the sum of the average FA values for each connection
from region i to j. For theNOSweightedmatrices, this value corresponds
to the total sum of the number of streamlines connecting regions i to j.

Sweighted ¼ 1
N

X
i∈N

Si: ð2Þ

Weighted clustering coefficient of the network (C) and of each node
(Ci) is used to quantify the extent of segregation in the brain, allowing
for specialized processing to occur within densely interconnected
groups of brain regions (Rubinov and Sporns, 2010; Watts and
Strogatz, 1998b). Ci for each node i corresponds to the number of the
connections between all the neighbor nodes of region i, including infor-
mation on how strong node i and its direct neighbors are clustered
(Eq. (3)).

Cweighted
i ¼

X
j;h∈N

wijwihwjh

� �1
3

ki ki−1ð Þ ð3Þ

With weighted node degree of i (Eq. (4))

kwi ¼
X

j∈N
wij: ð4Þ

Nodes with only one connection were assigned a Ci of 0. The overall
clustering-coefficient C characterizes the overall clustering of G andwas
computed as the average of Ci over all voxels i in G (Eq. (5)).

Cweighted ¼ 1
N

X
i∈N

Cweighted
i : ð5Þ

Weighted local and global efficiencies provide information about the
integration of information fromdistributed brain regions. Paths in a net-
work are sequences of distinct links between nodes that represent route
of information flow (Latora and Marchiori, 2001). In weighted graphs,
the distance matrix (dweighted) is the inverse of the connection strength,
w (Eq. (6)). Weighted efficiency (Effi) is calculated as the average in-
verse shortest path length from region i to all other regions j in the
network (Eq. (7)).

Eweighted
i ¼ 1

2

X
i∈N

X
j;h∈N;i≠ wijwih dweighted

jh Nið Þ
h i−1

� �1=3

ki ki−1ð Þ ; ð6Þ

with

dweighted i; jð Þ ¼
X

u;v∈gw
1

wuv
: ð7Þ

Global efficiency is similarly calculated as the average inverse
shortest path length across the whole network (Eq. (8)).

Eweighted ¼ 1
n

X
i∈N

X
j∈N; j≠i

dw
ij

� �−1

n−1
: ð8Þ

Statistics

Global metrics
As the distribution properties of most graphmetrics are poorly char-

acterized, nonparametric statistical tests were used to examine the rela-
tionship between graph metrics and CCI as well as the sex interaction
(Bullmore and Sporns, 2009; Craddock et al., 2013). To examine the re-
lationship between CCI and global graph metrics calculated from FA
weighted connectivity matrices, permutation testing was used. First,
the observed correlation between the global statistic (S, C, and E sepa-
rately) and CCI was calculated for the whole group (robs). The data
was then permuted, randomly reassigning group (male or female) for
10,000 permutations (B). For each B, the observed correlation between
the global statistic and CCIwas calculated. The p-valuewas calculated as
the probability of obtaining correlations that aremore extreme than the
observed correlations. To remove the effects of FSIQ, the analysis was
conducted again following the same procedure, however, the correla-
tions between CCI and the graph metric of interest were conducted
after the effects of FSIQ were regressed out of the CCI measure. The C
and E measures are dependent on the underlying structural connectiv-
ity (S). To ensure the effects of C and E are due to the organization of the
connectivity, the effect of connectivity (S) was also regressed out of the
CCI measure. By taking this approach, we know that the relationships
are due to the organizational properties rather than the underlying
connectivity.

For results with a significant correlation between the CCI and the
graph metric, tests of the interaction of sex were conducted to deter-
mine if the correlations between CCI and graph metric differed at the
level of sex. First, the observed correlation between global statistic (S,
C, and E separately) and CCI was calculated within each sex (robsFemale

robsMale). Second, the absolute value of the difference between the corre-
lationswas computed. Third, the permutation step consisted of the ran-
dom reassignment of group (male or female). This was conducted for
10,000 permutations (B). For each B, the absolute values of the differ-
ences in correlations between the global statistic and CCI were comput-
ed, with each permuted correlation coefficient r*Female and r*Male. From
this, we obtained a distribution of the differences in correlation coeffi-
cients. The p-value was calculated as the probability of obtaining differ-
ences in correlations that are more extreme than the observed
difference in correlations. To remove the effects of age and FSIQ, the
analysis was conducted again following the same procedure, however,
the correlations between CCI and the graphmetric of interest were con-
ducted after the effects of age and FSIQ were regressed out of the CCI
measure. For the analyses of clustering and efficiency, the effect of con-
nectivity (S) was also regressed out of the CCI measure to ensure that
any significant relationships found are not driven by the total connectiv-
ity, but by the topological organization of connectivity.
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If significant differences in correlations were found between the
sexes, each global graph metrics was then examined within each sex.
Permutation procedures were followed as above, however, examining
only the correlation to determine the probability of obtaining correla-
tions as extreme or more extreme that the observed correlation within
each sex separately.

The same procedure outlined above was followed to analyze the
NOS-weighted connectivity matrices.

Region specific metrics
Region specific metric analyses were run if the global interaction

was significant. To examine the relationship between CCI and region
specific graphmetrics calculated from theweighted connectivitymatri-
ces, permutation testswere used. Thefirst analyses examined the differ-
ence in correlations between regional graph metric and creativity
betweenmales and females. The same permutation procedurewas con-
ducted as with the global metrics, examining the observed absolute
value of the difference in correlations between node statistic (Si, Ci,
and Ei) and CCI. For each node i, 10,000 permutations were conducted.
To identify which regions within each sex were related to creativity,
an additional analysis examined the strength of the correlations in
males and females separately. First, the correlation coefficients were
calculatedwithin each sex (robsFemale robsMale). Second, the group assign-
ments (male or female) were then randomly reassigned and the
correlation between the node statistic and CCI was computed. This
was conducted for 10,000 permutations (B), with each permuted corre-
lation coefficient, r*Female and r*Male. The p-value was calculated as the
probability of obtaining correlations through permutations that are
more extreme than the observed correlations. To correct for multiple
comparisons, effects were tested to determine if they survived a False
Discovery Rate (FDR) threshold of q = 0.05 (Benjamini and Hochberg,
1995) across all node specific measures.

Results

There were no significant differences in age and CCI in males and fe-
males (Table 1). Similarly, no significant differences in the global
(Table 1) and local graphmetrics were observed, corrected for multiple
comparisons. There were, however, significant differences in FSIQ, with
males scoring (on average) significantly higher than females (Table 1).

Global metrics

The first analyses between global metrics (S, C, and E) calculated
from the FA-weighted connectivity matrices revealed a significant
correlation between clustering (C) and creativity in the entire group, ac-
counting for age, sex, and total connectivity strength (S). The relation-
ship between global connectivity (S) and CCI differed across the sexes
(p= 0.006, p b 0.001when accounting for age and FSIQ). For clustering
(C), there were significant differences in the correlations between the
global metrics and creativity in each sex when accounting for age, con-
nectivity (S), and FSIQ (p = 0.02; Fig. 2). There were no significant
Table 1
Group differences.

Cognitive variables and
graph metrics

Males,
mean ± SD

Females,
mean ± SD

p-Value

CCI 98.27 ± 8.92 99.76 ± 9.37 0.4137
FSIQ 121.08 ± 14.04 115.25 ± 12.15 0.0265⁎

Age 21.62 ± 2.80 21.40 ± 3.09 0.6932
Connectivity Sweighted 620.01 ± 65.87 604.04 ± 69.67 0.4633
Clustering Cweighted 0.540 ± 0.01 0.536 ± 0.01 0.1741
Efficiency Eweighted 0.941 ± 0.01 0.943 ± 0.01 0.2374

FSIQ, Full-Scale Intelligence Quotient; CCI, Composite Creativity Index; connectivity
Sweighted, clustering Cweighted, efficiency Eweighted.
⁎ Indicates significance at p b 0.05.
differences in the correlations between CCI and efficiency (E) in each
sex accounting for age, connectivity (S), and FSIQ. When the relation-
ship between CCI and S was examined in each sex separately, there
was a significant negative correlation between S and CCIwhen account-
ing for age and FSIQ (p = 0.025). There was no significant relationship
between S and CCI in males. When the relationship between CCI and C
was examined in each sex separately, there was a significant negative
correlation between C and CCI when accounting for age, FSIQ, and
connectivity (S; r = −0.51, p b 0.001; Fig. 2). There was no significant
relationship between S and CCI in males (Fig. 2).

The NOS weighted matrices revealed no significant results, suggest-
ing that the observed FA effects are likely not related to simple differ-
ence in tractography across subjects.

Region specific metrics

Significant differences in correlations at each level of sex
The correlations between S and C for each region i and creativity

significantly differed in males and females in regions primarily within
the frontal and parietal lobes, but also within the occipital, temporal,
and subcortical regions (Table 2). For each of the regions that demon-
strated significant differences in correlations, females demonstrated
negative correlations between each graph metric and CCI, while males
demonstrated either positive correlations or correlations close to zero
(Fig. 3). When the effects of FSIQ were not accounted for, results did
not significantly differ. Similarly, when S was accounted for in the anal-
yses of C and E, the results did not significantly differ, indicating that the
effects were not driven by total connectivity but by the topological
organization.

Significant relationships between node specific connectivity
Si and creativity

The results of the permutation testing revealed that females exhibit-
ed significant negative correlations between connectivity Si in regions of
the frontal and parietal lobes, as well as a subcortical regions accounting
for age and FSIQ. Males exhibited significant positive correlations be-
tween connectivity Si in accounting for age and FSIQ (Fig. 4). Specifical-
ly, in females the left banks of the temporal lobe (p = 0.0012*,
* indicates region survived critical FDR threshold for multiple compari-
sons), left caudal anterior cingulate (p = 0.0218), right caudal anterior
cingulate (p = 0.0050*), right entorhinal (p = 0.0180), right fusiform
(p= 0.0043*), right inferior parietal (p= 0.0023*), right lateral occip-
ital (p= 0.0285), right parahippocampal (p= 0.0049*), right posterior
cingulate (p= 0.0054), right rostral middle frontal (p= 0.0482), right
superior frontal (p= 0.0054), and right accumbens area (p= 0.0012*)
demonstrated significant negative correlations between Si and CCI,
accounting for age and FSIQ. In males, the left middle temporal (p =
0.018), right rostal middle frontal (p = 0.0438), and right amygdala
(p = 0.0226) demonstrated significant positive correlations between
Si and CCI, accounting for age and FSIQ.

Significant relationships between node specific connectivity Ei
and creativity

The results of the permutation testing revealed that females exhibit-
ed significant negative correlations between connectivity Ei in regions
of the frontal and parietal lobes, aswell as subcortical regions, corrected
for age and FSIQ. Males exhibited significant positive correlations be-
tween connectivity Ei, accounting for age and FSIQ (Fig. 4). Specifically,
in females the left banks of the temporal lobe (p = 0.0288), left caudal
anterior cingulate (p= 0.0135), left medial orbitofrontal (p= 0.0327),
left rostral anterior cingulate (p = 0.0187), left rostral middle frontal
(p = 0.0102), left temporal pole (p = 0.027), right amygdala (p =
0.0262), right caudal anterior cingulate (p = 0.0074), right entorhinal
(p = 0.0167), right fusiform (p = 0.0272), right inferior parietal
(p = 0.0046), right inferior temporal (p = 0.0391), right isthmus of
the cingulate (p = 0.0298), right lateral orbitofrontal (p = 0.0154),



Fig. 2. Scatter plots depicting the relationship between the global measure of network Connectivity (S), the global measure of clustering observed in themetric (C) and Creativity in each
sex separately. Females exhibit significant negative correlations between graph metrics and creativity, whereas male show no significant relationships.
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right posterior cingulate (p = 0.0022), right superior frontal (p =
0.0061), right temporal pole (p = 0.0018*), right caudate (p =
0.0116), right amygdala (p = 0.0262), and right accumbens area
(p = 0.0004*) demonstrated significant inverse correlations between
Ei and CCI accounting for age and FSIQ. Whereas males demonstrated
significant positive correlations between the left inferior parietal
(p = 0.0214), leftmiddle temporal (p= 0.0199), and right rostralmid-
dle frontal (p = 0.0305) and CCI accounting for age and FSIQ.
Significant relationships between node specific connectivity Ci
and creativity

The results of the permutation testing revealed that females exhib-
ited significant negative correlations between connectivity Ci in re-
gions of the frontal and parietal lobes, as well as subcortical regions,
accounting for age and FSIQ. Males exhibited significant positive corre-
lations between connectivity Ci, accounting for age and FSIQ (Fig. 4).
Specifically, the left banks of the temporal lobe (p = 0.0288),
left caudal anterior cingulate (p = 0.0135), left medial orbitofrontal
(p = 0.0327), left rostral anterior cingulate (p = 0.0187), left rostral
middle frontal (p = 0.0102), left temporal pole (p = 0.0270),
right caudal anterior cingulate (p = 0.0074), right entorhinal (p =
0.0167), right fusiform (p = 0.0272), right inferior parietal (p =
0.0046), right inferior temporal (p = 0.0391), right isthmus cingulate
(p =0.0391), right lateral occipital (p = 0.0298), right lateral
orbitofrontal (p = 0.0154), right posterior cingulate (p = 0.0022),
right superior frontal (p= 0.0061), right temporal pole (p= 0.0018),
right caudate (p= 0.0116), right amygdala (p= 0.0262), and right ac-
cumbensarea(p= 0.0004*).
Discussion

This study of large-scale brain connectivity reveals that the relation-
ships between connectivity of the brain and creativity differ in females
and males, accounting for age and intelligence. Extending previous ob-
servations of connectome differences between males and females
(Ingalhalikar et al., 2013) our findings now show a sexually dimorphic
relationship of connectome structure on creativity. Males showed posi-
tive, but weak relationships between graph metrics and creativity,
while females were found to exhibit an inverse relationship between
connectivity and clustering of the global structural network and
creativity.

Region specific analyses provided further insight into these differ-
ences, with more creative females demonstrating lower connectivity,
efficiency, and clustering in numerous regions across the brain and
more creative males exhibiting greater connectivity, efficiency, and
clustering in relatively fewer regions. These differing relationships sug-
gest that, at the expense of efficiency (greater path lengths), highly cre-
ative females are able to develop novel ideas to solutions by involving
more regions of the brain in processing. Highly creative males, in
contrast, demonstrate more efficiency and clustering of the network,
suggesting more direct connections between regions as well as an in-
crease in local processing. The regions implicated include regions of
the DMN and the ECN, suggesting that these networks are critically in-
volved in creativity as measured by divergent thinking. We note that
these results are consistentwith the emerging data that supports the in-
volvement and interaction of the DMN and the ECN in creative thinking,
as reviewed elsewhere (Jung et al., 2013). Furthermore,we found signif-
icant relationships between creativity and regions such as the thalamus,



Table 2
Group differences in correlations.

Regions that significantly differ in the correlations between
graph metric and CCI

Connectivity Efficiency Clustering

robsFemale–robsMale p-Value robsFemale–robsMale p-Value robsFemale–robsMale p-Value

Subcortical Left_caudate −0.3494 0.0169 −0.4627 0.0011a

Left_accumbens_area −0.4196 0.0039a −0.3246 0.0256
Right_putamen −0.4257 0.0031a

Right_thalamus_proper −0.3091 0.0347 −0.3102 0.0377
Right_caudate −0.3722 0.0112 −0.4446 0.0017a

Right_hippocampus −0.3546 0.0143a −0.3263 0.0269
Right_amygdala −0.5384 0.0001a −0.5718 0.0001a −0.3198 0.0306
Right_accumbens_area −0.5686 0.0002a −0.6496 0.0001a

Default mode network Left caudal anterior cingulate −0.5111 0.0002a −0.4743 0.0011a

Left cuneus −0.3386 0.0209 −0.3546 0.0150a

Left fusiform −0.5750 0.0001a

Left inferiorparietal −0.3034 0.0381 −0.4567 0.0009a −0.4001 0.0053a

Left isthmus cingulate −0.3009 0.0398
Left entorhinal −0.3594 0.0145 −0.4135 0.0044a

Left posterior cingulate −0.5360 0.0001a

Left precuneus −0.3038 0.0360
Left rostral anterior cingulate −0.3942 0.0072 −0.5421 0.0001a −0.4339 0.0029a

Right cuneus −0.3212 0.0300
Right caudal anterior cingulate −0.3308 0.0248 −0.3586 0.0157a

Right entorhinal −0.4961 0.0005a −0.5121 0.0003a −0.3536 0.0139a

Right fusiform −0.4967 0.0004a −0.4754 0.0008a −0.5095 0.0005a

Right inferiorparietal −0.4993 0.0004a −0.5534 0.0002a −0.2928 0.0435
Right parahippocampal −0.2964 0.0438 −0.3528 0.0147a

Right posteriorcingulate −0.4329 0.0032a −0.471 0.0006a

Executive control network Left caudal middle frontal −0.397 0.0067a −0.3728 0.0083a

Left parsorbitalis −0.4969 0.0004a

Left parstriangularis −0.3408 0.0204 −0.4136 0.0051a

Left superiorparietal −0.3755 0.0097a

Left rostral middle frontal −0.3961 0.0051a

Left superior frontal −0.2982 0.0395 −0.3671 0.0102a

Left supramarginal −0.335 0.0232 −0.3782 0.0072
Right parsorbitalis −0.3446 0.0176 −0.347 0.0188a −0.4042 0.0041a

Right rostralmiddlefrontal −0.5574 0.0001a −0.5669 0.00001a −0.4544 0.001a

Right superiorfrontal −0.3354 0.0224 −0.3765 0.0088a −0.4441 0.002a

Right supramarginal −0.3117 0.0327
Temporal lobe Left banks of temporal lobe −0.3856 0.0074 −0.4382 0.0020a −0.3938 0.007a

Left inferior temporal −0.3887 0.0067a

Left middle temporal −0.4234 0.0029a −0.4267 0.0026a −0.3373 0.0190
Left superior temporal −0.3616 0.0126a

Left temporal pole −0.3910 0.0060a −0.5105 0.0002
Right inferior temporal −0.4088 0.0044a −0.4598 0.0013a

Right lingual −0.4439 0.0016a

Left lingual −0.3779 0.0076a

Right superior temporal −0.3129 0.0329
Right temporal pole −0.4283 0.0031a −0.6476 0.00002a −0.4516 0.0011a

Frontal Left lateral orbitofrontal −0.3426 0.0173
Left medial orbitofrontal −0.3097 0.0374 −0.4874 0.0009a −0.2892 0.0494
Right lateral orbitofrontal −0.421 0.0028a

Right medial orbitofrontal −0.422 0.0026a −0.4624 0.0009a

Right frontalpole −0.3941 0.0069a −0.4443 0.0022a −0.3861 0.0066a

Other Brain Stem −0.3005 0.041a −0.3032 0.0388
Left postcentral −0.4782 0.0011a −0.4801 0.0003a

Right lateral occipital −0.434 0.0024a −0.3399 0.0211 −0.5198 0.0002a

Right paracentral −0.3225 0.0265 −0.3437 0.0182

a Indicates region survived critical FDR threshold for multiple comparisons.
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amygdala, caudate, and putamen, regions often neglected in cognitive
neuroscience research.

Highly creative females demonstrated inverse relationships across
all three measures examined. Global connectivity is the general con-
nectedness of a network, the sumof theweights of all of the connections
in the network. For highly creative females, fewer and/or less strong
connections were observed, indicated by a lower overall connectivity
measure. When the specific nodes of the networks were examined,
we observed the same inverse relationships, varying in magnitude
across the regions of the brain. This inverse relationship is consistent
with previous reports finding lower levels of FA within the left anterior
thalamic radiation (Jung et al., 2010a), here suggesting decreased con-
nectivity across multiple regions of the brain.
The inverse relationships between global clustering and node specif-
ic measures of efficiency and clustering suggest that highly creative
women have less local connectivity across the brain (van den Heuvel
and Sporns, 2011; van den Heuvel et al., 2009). It is well established
that the small-world organization of the structural connections of the
brain facilitate efficient information transfer in the brain (Bassett and
Bullmore, 2006). Interestingly, based on the inverse correlations found
in females, these results suggest that more creative females have less
segregated processing, with their brain networks perhaps resembling
more simplistic random networks in terms of the lower clustering
observed. Small world networks maximize efficiency with minimum
cost (number of paths) (Bassett and Bullmore, 2006).While speculative,
less clustering in creative females might imply reliance on more



Fig. 3. Regions that significantly differ in correlations between graph metrics and creativity in males and females. Upper figures show p-values of significant differences in correlations,
color bar indicates magnitude of p-value. Red line indicates critical FDR threshold (q = 0.05; see Materials and methods). Lower figures show correlations between creativity and
graph metric for each of the significantly different individual regions with females shown in grey and males shown in white. A, Efficiency Ei is the average inverse shortest path length
from each region to all other regions. B, Connectivity Si is the sum of the connections of each region to all other regions. C, clustering Ci is the number of connections between all neighbor
nodes of the region.
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distributed processing, again suggesting involvement of more wide-
spread regions. In contrast, highly creative males demonstrate more di-
rect paths (connections between nodes have to pass through fewer
nodes to reach destination) and greater clustering (more nearby neigh-
bors of a node are connected). This organization is known to facilitate
efficient information processing (Bassett and Bullmore, 2006), perhaps
indicating that highly creative males rely on more locally oriented
processing.

We found that many of the regions that demonstrate particularly
strong relationships between efficiency, clustering and creativity were
within the DMN and the ECN; however, the results were not limited
to these networks. These networks are implicated in cognitive abilities
required for the development of novel and useful ideas, but they also
contribute to a vast array of other cognitive domains (i.e., attention,
working memory, visualization, self-reflection), all of which interact
with the ability to think divergently. Studies of divergent thinking
have examined the extent to which the DMN becomes deactivated in
cognitive tasks. Takeuchi et al. (2011) found that decreased task-
induced deactivation (TID) of the precuneus of the DMN during awork-
ing memory task correlated to higher measures of divergent thinking.
The magnitude of TID of the DMN has been hypothesized to reflect the
reallocation of attention from task irrelevant to task relevant cognition
(Mckiernan et al., 2003). Highly creative individuals demonstrate in-
creased DMN activation during cognitive tasks (Takeuchi et al., 2012).
Furthermore, divergent thinking is positively related to the connectivity
between the MPFC and the PCC, suggesting increased fidelity of the
DMN in highly creative individuals (Takeuchi et al., 2012).

While these studies support the notion of increased involvement of
the DMN in creative cognition, they fail to address the involvement of
the executive control network (ECN), regions of the frontal and parietal
lobe that are also implicated in creativity (Ellamil et al., 2012; Liu et al.,
2012), primarily the dorsolateral prefrontal cortex (DLPFC), the ventral
prefrontal cortex (vPFC), and the lateral parietal cortex (Seeley et al.,
2007). One study utilized a paradigm in which the individual was
asked to first generate ideas in the scanner and separately evaluate
and select the best ideas (Ellamil et al., 2012). These authors found
that both the ECN and DMN were active during the evaluations of the
ideas, whereas the temporal lobe was important to the generation of
ideas. Another fMRI study examined neural functioning during freestyle
rap improvisation as a means to assess creative generation (Liu et al.,
2012). Participants exhibited dissociated activity in the MPFC and
DLPFC, with increased activation of the MPFC and decreased activation
of the DLPFC during freestyle rap improvisation. One interpretation of
this activation pattern would include the supervisory attention and ex-
ecutive control mechanisms of the DLPFC being down-regulated,
allowing for the generation of novel ideas.

Amore comprehensive understanding of the how these specific cog-
nitive abilities contribute to creative cognition will be necessary to
begin to understand how variation in the underlying structure of
these networks constrains the manifestation of creative ability. As the
functional networks are constrained by the large-scale anatomical net-
work structure (Greicius et al., 2009; Honey et al., 2009; van den
Heuvel and Sporns, 2013a,b; van den Heuvel et al., 2009), the results
of this study are expected to be reflected in the functional architectures.
However, to our knowledge, there are no studies that have yet exam-
ined how creative cognition relates to the functional network architec-
ture using measures of efficiency and clustering.

We have focused on the relationships between graph metrics and
creativity in females, intentionally avoiding discussion of the relation-
ships observed in males, as there were only weak effects that did not
generally survive correction for multiple comparisons. A more impor-
tant question is why females might exhibit strong relationships
between network organization and creativity as opposed to males.
The studies of sex differences in structural organization highlight the
nature of the cognitive strengths of males and females (Gong et al.,
2009a; Ingalhalikar et al., 2013). Specifically, Gong et al. (2009a,b)
discussed female's advantage in aspects of verbal processing as a poten-
tial reason for the increased efficiency foundwithin the left hemisphere.



Fig. 4. Regions that have significant relationships between graph metric and creativity. Figures show p-values of significant differences in correlations, color bar indicates magnitude of
p-value. Upper figures show significant relationships in females where the blue indicates that the relationship was inverse, where decreased measure of graph metric was related to in-
creased creativity. Lower figures show significant relationships inmales where orange to red indicates that the relationship was positive, increased graphmetric was related to increased
creativity. Line through color bar indicates critical FDR threshold (q = 0.05; see Materials and methods).

388 S.G. Ryman et al. / NeuroImage 101 (2014) 380–389
Ingalhalikar et al. (2013), in contrast, found that female brains exhibit
increased inter hemispheric connectivity, whereas, males had more
intra hemispheric connections. These authors suggest that females are
better able to integrate information across the hemispheres, whereas
males are better able to conduct coordinated action.

There are several limitations to consider when interpreting the re-
sults of this study. It is possible that we did not find substantial relation-
ships between network architecture and creativity inmales because we
did not examine the network measures that are relevant in this group,
such as modularity and transitivity as examined by Ingalhalikar et al.
(2013). Other potential weaknesses of the study include the relatively
small sample size (~100), the focus on measures of divergent thinking
as a proxy for creative cognition, and the lack of functional graph
measures (e.g., fMRI) by which to compare structural networks. The
diffusion tensor model used to construct the fiber tracts may not accu-
rately characterize tracts at points of complex fiber architecture (for ex-
ample when tracts cross or kiss). Furthermore, this study only used one
relatively low parcellation scheme and did not examine alternate edge
weights beyond FA weighted and number of streamline weighted net-
works. Future studies should use higher quality diffusion data allowing
for more advanced models of diffusion reconstruction that can resolve
crossing fibers, multiple parcellation schemes, as well as different edge
weights. Lastly, it is unclear how thesemetrics relate to global measures
of grey and white matter volumes. Future studies should identify how
global differences in gray matter and white matter affect the relation-
ships between graph metrics and cognitive abilities.

This study provides initial data relevant to our understanding of sex
differences in the relationships between structural networks and crea-
tivity. Emerging applications of complex network theory to the analysis
of brain connectivity will provide a more sophisticated means of identi-
fying the nature of the differences in network structure underlying indi-
vidual differences in creative cognition. Moreover, such applications of
graph theory should increase substantially our understanding of the in-
terplay between complex cognitive constructs (e.g., creativity)with dis-
crete functional brain networks.
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