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Twin research has supported the concept of intelligence (general cognitive ability, g) by showing
that genetic correlations between diverse tests of verbal and nonverbal cognitive abilities are
greater than 0.50. That is, most of the genes that affect cognitive abilities are highly pleiotropic in
the sense that genes that affect one cognitive ability affect all cognitive abilities. The impact of this
finding may have been blunted because it depends on the validity of the twin method. Although
the assumptions of the twinmethod have survived indirect tests, it is nowpossible to test findings
from the twin method directly using DNA alone in samples of unrelated individuals, without the
assumptions of the twin method. We applied this DNA method, implemented in a software
package called Genome-wide Complex Trait Analysis (GCTA), to estimate genetic variance and
covariance for two verbal tests and twononverbal tests using 1.7 million DNAmarkers genotyped
on 2500 unrelated children at age 12; 1900 children also had cognitive data and DNA at age 7.
Because each of these individuals is one member of a twin pair, we were able to compare GCTA
estimates directly to twin study estimates using the samemeasures in the same sample. At age 12,
GCTA confirmed the results of twin research in showing substantial genetic covariance between
verbal and nonverbal composites. TheGCTAgenetic correlation at age 12was 1.0 (SE = 0.32), not
significantly different from the twin study estimate of 0.60 (SE = 0.09). At age 7, the genetic
correlations were 0.31 (SE = 0.32) from GCTA and 0.71 (SE = 0.15).from twin analysis. The
results from the larger sample and strongermeasures at age 12 confirm the twin study results that
the genetic architecture of intelligence is driven by pleiotropic effects on diverse cognitive
abilities. However, the results at age 7 and the large standard errors of GCTA bivariate genetic
correlations suggest the need for further research with larger samples.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Because intelligence predicts educational attainment,
income, health and longevity better than all other predictors
combined, it is a key ingredient in the intellectual capital
of knowledge-based societies (Deary, 2012). Intelligence is at
the pinnacle of the hierarchical model of cognitive abilities
that subsumes group factors and specific tests (Carroll, 1993,
1997), which is why it has been called general cognitive
ability (g) (Jensen, 1998; Spearman, 1904). Genetic research,
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largely based on the twin method that compares resemblance
for monozygotic and dizygotic twins, suggests that genes with
pervasive effects across cognitive abilities are the genetic
foundation for intelligence. In contrast to the average pheno-
typic correlations of about 0.30 between diverse cognitive
abilities (Carroll, 1993), genetic correlations among cognitive
abilities are consistently greater than 0.50 inmore than a dozen
studies in childhood, adolescence, and adulthood, with some
evidence for increasing genetic correlations during childhood
(Plomin, DeFries, Knopik, & Neiderhiser, 2013).

Genetic correlations indicate the extent to which the same
genes affect different abilities; they are literally correlations
between genetic effects on traits independent of heritability
(Plomin, DeFries et al., 2013). This overlap in genetic effects is
generally known as pleiotropy but has been dubbed generalist
genes to highlight this finding in relation to cognitive abilities
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Table 1
Twin and GCTA parameter estimates for verbal and nonverbal abilities at
ages 7 and 12.

Twin GCTA

A C E A (SE) E (SE)

Age 7
Verbal .29 (.06) .34 (.05) .36 (.02) .47 (.18) .52 (.17)
Nonverbal .21 (.07) .28 (.05) .50 (.03) .26 (.17) .74 (.17)

Age 12
Verbal .36 (.06) .21 (.05) .43 (.02) .23 (.13) .76 (.13)
Nonverbal .42 (.06) .16 (.05) .42 (.02) .15 (.14) .84 (.14)

Standard error (SE) is shown in parentheses. Twin analyses were restricted
to twin pairs for whom one member of the twin pair was included in GCTA.
The twin analyses at age 7 were based on 734 MZ and 1146 DZ twin pairs for
verbal and 742 MZ and 1164 DZ twin pairs for nonverbal; twin analyses at
age 12 were based on 920 MZ and 1432 DZ twin pairs for verbal and 894 MZ
and 1402 DZ twin pairs for nonverbal. The numbers of unrelated individuals
in GCTA analyses were 1900 for verbal and 1917 for nonverbal at age 7 and
2496 for verbal and 2428 for nonverbal at age 12.

561M. Trzaskowski et al. / Intelligence 41 (2013) 560–565
(Plomin&Kovas, 2005). Because genetic correlations are not 1.0,
these same data also provide evidence for genetic specificity.
However, given how diverse cognitive processes appear to be –

such as verbal, spatial and memory – what is surprising is the
extent of genetic overlap between these abilities. Although
multivariate genetic research has drilled down beneath tradi-
tional tests of cognitive abilities to uncover similar results for
elementary cognitive processes and brain structure and function
(Deary, Penke, & Johnson, 2010), the present paper focuses on
traditional tests of verbal and nonverbal cognitive function.

Because generalist genes would seem to be a major finding
about the origins of individual differences in cognitive abilities –
suggesting that g indexes general genes for cognitive abilities –
it is surprising that this finding has had so little impact in related
fields such as neuroscience or experimental cognitive psychol-
ogy. We suggest that part of the reason for this neglect – in
addition to the major reason that these fields generally ignore
individual differences (Baddeley, 2012; Giedd & Rapoport,
2010) – is that the generalist gene finding rests largely on
the twin design, although adoption research also supports the
hypothesis. Even though the assumptions of the twin and
adoption methods have been tested and generally pass these
tests (Plomin, DeFries et al., 2013), these assumptions make it
easier to ignore the results of twin and adoption studies.

The purpose of the present study is to investigate the genetic
nature of cognitive abilities using a new method that is based
solely on DNA, which avoids the assumptions of the twin and
adoption methods. The method, implemented in a software
package called Genome-wide Complex Trait Analysis (GCTA),
correlates genetic similarity pair by pair with each pair's
phenotypic similarity in a large sample of unrelated individuals.
Specifically, the method partitions the phenotypic variance into
additive genetic and residual components by fitting a genetic
‘relatedness’ matrix to a phenotypic matrix in a mixed linear
model (MLM; Yang et al., 2010; Yang, Lee, Goddard & Visscher,
2011). Genetic similarity is assessed overall from hundreds of
thousands of single-nucleotide polymorphisms (SNPs) in large
samples of unrelated individuals; such data are widely available
from genome-wide association (GWA) studies (Plomin, 2012).
Crucially, unlike GWA studies, this MLM method does not rely
on detecting associations with individual SNPs, but rather it
calculates the overall effect of all SNPs as well as DNA variants
correlated with the SNPs. Because the method does not have a
consistent name, we refer to it as GCTA, which is the name of its
software package. Univariate GCTA has found genetic influence
for intelligence in adults (Chabris et al., 2012; Davies et al., 2011)
and children (Plomin, Haworth, Meaburn, Price, & Davis, 2013),
as well as for height (Yang et al., 2010) and weight (Yang,
Manolio, et al., 2011), psychiatric and medical disorders (Lee,
Wray, Goddard, & Visscher, 2011; Lee, DeCandia, et al., 2012;
Lubke et al., 2012), and personality (Benjamin, Ebstein, &
Belmaker, 2002; Vinkhuyzen et al., 2012).

Bivariate GCTA has recently been developed to estimate
genetic correlations between traits (Lee, Yang, Goddard,
Visscher, & Wray, 2012). It was first applied to the longitudinal
correlation between intelligence in childhood and old age
(Deary, Yang, Davies, Harris, Tenesa, Liewald, et al., 2012) and
subsequently to childhood intelligence from age 7 to age 12
(Trzaskowski, Yang, Visscher, & Plomin, in press). We have
also applied bivariate GCTA to confirm twin study estimates of
high genetic correlations between g and academic performance
in reading, mathematics and language (Trzaskowski et al.,
2013). The present study uses bivariate GCTA to address the
fundamental issue of the genetic nature of intelligence itself.
We compareGCTA estimates of genetic variance and covariance
to estimates from the twin method using the same sample
assessed longitudinally at ages 7 and 12 and the samemeasures
of verbal and nonverbal cognitive abilities. Such direct compar-
isons between GCTA and twin study estimates go beyond
merely testing the methodological validity of the twin method:
As explained later, they reveal important information about the
genetic architecture of intelligence.

2. Method

2.1. Participants

The sample was drawn from the Twins Early Development
Study (TEDS), which is a multivariate longitudinal twin study
that recruitedmore than 11,000 twin pairs born in England and
Wales in 1994, 1995 and 1996 (Haworth, Davis, & Plomin,
2013; Oliver & Plomin, 2007). TEDS has been shown to be the
representative of the UK population (Kovas, Haworth, Dale, &
Plomin, 2007). The project received approval from the Institute
of Psychiatry ethics committee (05/Q0706/228) and parental
consent was obtained prior to data collection. Individuals
were included if their first language was English and they
had no major medical or psychiatric problems. Using data
collected at ages 7 and 12, respectively, GCTAwas conducted
on approximately 1900 and 2500 unrelated individuals (only
one member of each twin pair) with DNA and cognitive data.
Twin model-fitting analyses were conducted on around 1900
twin pairs at age 7 and around 2350 pairs at age 12. As
expected for representative twin studies, the twins included
similar numbers of MZ twins, same-sex DZ twins, and
opposite-sex DZ twins (see Table 1 for sample size details.)

2.2. Genotyping

Although DNA is available for more than 12,000 TEDS
participants, fundswere available to genotype 3665 individuals
(one member only per twin pair) on Affymetrix GeneChip 6.0



Table 2
Twin and GCTA genetic and environmental correlations between verbal and
nonverbal abilities at ages 7 and 12.

Twin GCTA

rA rC rE rA rE

Age 7 .71 (.15) .39 (.11) .11 (.04) .31 (.32) .42 (.16)
Age 12 .60 (.09) .79 (.13) .17 (.03) 1.00 (.32) .30 (.11)

rA = additive genetic correlation; rC = common or shared environmental
correlation; rE = residual or nonshared environmental correlation. Standard
error (SE) is shown in parentheses. Sample sizes for twin analyses were 732
MZ pairs and 1141 DZ pairs at age 7 and 891 MZ pairs and 1390 DZ pairs at
age 12. Sample sizes of unrelated individuals for GCTA analyses were 2496 at
age 7 and 2428 at age 12. Genetic correlations were constrained not to
exceed 1.0.
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SNP genotyping arrays using standard experimental proto-
cols. Nearly 700,000 SNPs were genotyped and more than
one million other SNPs were imputed using IMPUTE v.2.
software (Howie, Donnelly, & Marchini, 2009). These SNPs had
survived stringent quality control criteria: allele frequency
information N .975, minor allele frequency N .01, genotype
call-rate N .80, Hardy–Weinberg equilibrium N 10−10, and
plate effect p-value N 10−6. More detailed information can be
obtained from the first author. DNA for 3152 individuals
survived quality control; of these 3152 individuals, 1900 had
cognitive data at age 7 and 2500 at age 12. To control for
ancestral stratification, we performed principal component
analyses on a subset of 100,000 quality-controlled SNPs after
removing SNPs in linkage disequilibrium (r2 N 0.2) (Fellay
et al., 2007). Using the Tracy–Widom test (Patterson, Price, &
Reich, 2006), we identified 8 axes with p b 0.05, which were
used as covariates in GCTA analyses.

2.3. Measures

The cognitive tests and testing procedures have been
described in detail for age 7 (Petrill, Rempell, Oliver, & Plomin,
2002) and age 12 (Haworth et al., 2007). At age 7, testing was
conducted by telephone; at age 12, testing was conducted
online. At each age, verbal and nonverbal composite scoreswere
derived from two widely used verbal tests and two widely used
non-verbal tests.

At age 7, the two verbal tests were the Similarities subtest
and the Vocabulary subtest from the WISC-III-UK, and the two
nonverbal tests were the Picture Completion subtest from the
WISC-III-UK and the Conceptual Grouping subtest from the
McCarthy Scales of Children's Abilities. At age 12, the verbal
tests included the Information and Vocabulary subtests from
the WISC-III-PI Multiple Choice test, and the two non-verbal
reasoning tests were WISC-III-UK Picture Completion and
Raven's Standard and Advanced Progressive Matrices. All of
these tests are reported to have reliabilities greater than 0.80
(McCarthy, 1972; Raven, Raven, & Court, 2003;Wechsler, 1992).
Although we have not assessed the reliability of the verbal and
non-verbal composites derived from these scales, reliability is of
course bound to be even greater for the composites.

For each cognitive measure at each age, scores were
regressed on sex and age and standardized residuals were
derived, ranked, and quantile normalized (Lehmann, 1975; van
der Waerden, 1975) before creating equal-weighted compos-
ites for verbal and nonverbal ability. All procedures were
executed using R (www.R-project.org). The phenotypic corre-
lations between the verbal and nonverbal composites are 0.35
at age 7 and 0.45 at age 12. Phenotypic correlations between
the four subtests at each age are presented in Supplementary
data Table 2b.

2.4. Twin analysis

The classical twin design and model-fitting, described in
detail elsewhere (Plomin, DeFries et al., 2013; Plomin, Haworth
et al., 2013), splits phenotypic variance into additive genetic
(A), shared or common environmental (C), and non-shared or
unique environmental (E) components. Within MZ twin pairs,
both genetic and shared environmental effects are assumed
to correlate 1.0, whereas within DZ twin pairs, shared
environmental effects correlate 1.0 but additive genetic effects
only correlate 0.5. Non-shared environmental influences (E)
are assumed to be uncorrelated for members of a twin pair and
thus only contribute to differences within pairs. Based on
previous research and examination of twin correlations, we fit
an ACEmodel with additive genetic, shared environmental and
non-shared environmental effects. As is standard in twin
analyses, residuals correcting for age and sex were used
because the age of twins is perfectly correlated across pairs,
which would otherwise be misrepresented as shared environ-
mental influence. The same applies to the sex of the twins,
since MZ twins are always of the same sex. Because previous
analyses of these data indicated nonsignificant differences in
model-fitting results between males and females (Davis,
Haworth, & Plomin, 2009; Kovas et al., 2007), we combined
same-sex and opposite DZ twin pairs in order to increase the
power of the analyses. Twin analyses limited to same-sex twins
yielded highly similar results (available from the first author).

We used standard ACEmodel-fitting analysis in the OpenMx
package for R (Boker et al., 2011). Fitting the ACE model for MZ
and DZ twins to the data yields estimates of the model's
goodness of fit and estimates the contributions of A, C, and E
with confidence intervals. We conducted four separate univar-
iate analyses for verbal and nonverbal composites at ages 7 and
12. We also conducted two bivariate analyses for verbal and
nonverbal at age 7 and at age 12. For the bivariate analysis, we fit
a bivariate Cholesky decomposition using OpenMx, althoughwe
present the results from a correlated factor solution because it
provides the most direct comparison to GCTA and is mathemat-
ically equivalent to Cholesky decomposition (Loehlin, 1996).

2.5. Genome-wide Complex Trait Analysis (GCTA)

The GCTA method was applied using the standard GCTA
software package (Yang, Manolio, et al., 2011). Conceptually,
the GCTA method can be thought of using a matrix of pairwise
genomic similarity to predict a matrix of pairwise phenotypic
similarity using a random-effects mixed linear model (Yang,
Manolio, et al., 2011). Pairwise genomic similarity is calculated
between all pairs of individuals in the sample using all genetic
markers genotyped on the SNP array or imputed from these
SNPs. GCTA uses this Genetic Relatedness Matrix (GRM) to
estimate how much of the variance of the phenotypic matrix
can be explained by additive effects of the common SNPs on the
SNP array or by unknown causal variants correlated with the
SNPs. In order to focus on chance genetic similarity required by

http://www.R-project.org
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the random-effects model, for any pair of individuals whose
genetic similarity is equal to or greater than a fourth cousin
(pairwise relatedness N 0.025), one individual from the pair is
removed.

In univariate analysis, the trait's variance is partitioned using
restrictedmaximum likelihood (REML) into genetic and residual
components (Yang, Manolio, et al., 2011; Yang et al., 2010). In
contrast, the bivariate method extends the univariate model by
relating the pairwise genetic similarity matrix to a phenotypic
covariancematrix between traits 1 and 2, allowing for correlated
residuals (Lee, Yang, et al., 2012). The eight principal compo-
nents described earlier were used as covariates in our GCTA
analyses; all phenotypes were age- and sex-regressed prior to
analysis.

3. Results

3.1. Genetic and environmental influences on verbal and
nonverbal abilities: Twin and GCTA estimates

Table 1 presents genetic and environmental univariate
estimates for GCTA and twin analyses. At age 12, twin analyses
yield moderate estimates of heritability (0.36 for verbal and
0.42 for nonverbal) and modest estimates of shared environ-
mental influence (0.21 for verbal and 0.16 for nonverbal). GCTA
estimates of genetic influence at age 12 are significant and on
average half (49%) of the twin study heritabilities, although
more for verbal (64%) than for nonverbal (36%). GCTA does not
distinguish between shared and nonshared environmental
influence and it does not detect non-additive genetic influence.
That is, all shared and nonshared environmental influence as
well as non-additive genetic variance and any genetic variance
not capture by the common SNPs on our DNA array are into
a residual non-genetic component of variance, which also
includes error of measurement.

As compared to age 12, the twin results at age 7 show less
heritability (0.29 for verbal and 0.21 for nonverbal) and greater
shared environmental influence (0.34 and 0.28). What is
unusual about the results at age 7 is that the GCTA estimates
are higher, although not significantly so, than the twin study
estimates of heritability, especially for verbal ability. However,
we ascribe this result to chance and the large standard error for
the GCTA estimates, although there are more interesting
possible explanations, as discussed later.

More detail about the twin and GCTA univariate results is
available online in Supplementary material, including twin
correlations and twin model-fitting as well as twin and GCTA
results for the individual cognitive tests rather than just their
verbal and nonverbal composites.

Stepping back from the details, these results at both ages 7
and 12 show that GCTA estimates of heritability are significant
and substantial, thus providing support for the twin study
heritability estimates. These findings allow us to proceed to
investigate this paper's central question about the genetic
correlation between verbal and nonverbal cognitive abilities.

3.2. Genetic and environmental influence on the covariance
between verbal and nonverbal abilities: Twin and GCTA estimates

Table 2 shows genetic and environmental correlations
between verbal and nonverbal abilities. The twin study
estimates of genetic correlations are 0.71 at age 7 and 0.60
at age 12. As indicated by their standard errors, these genetic
correlations are significant, and their magnitude is consistent
with the literature in suggesting substantial genetic overlap
between verbal and nonverbal abilities. At age 12, the GCTA
estimate of the genetic correlation is 1.0, highly significant,
and not significantly different from the twin study estimate
of 0.60. However, at age 7, the GCTA estimate of the genetic
correlation is 0.31, which does not reach significance with its
large standard error of 0.32. Given the large standard errors of
the GCTA estimates of genetic correlations, it is noteworthy
that averaging the genetic correlations at the two ages yields
the same genetic correlation of 0.66 for the twin and GCTA
estimates.

As noted earlier, the phenotypic correlations between the
verbal and nonverbal composites are 0.35 at age 7 and 0.45 at
age 12. Genes are responsible for about half of the phenotypic
correlation in the twin analyses at both ages 7 (51%) and 12
(51%). The samewas true for GCTA at age 12 (53%), however at
age 7 genes explained only 31% of the phenotypic correlation.

4. Discussion

Although the phenotypic correlation between verbal and
nonverbal cognitive abilities is only 0.45 at age 12, our GCTA
yielded a genetic correlation of 1.0 between verbal and
nonverbal cognitive abilities. The current twin analysis, using
the same sample and same measures as the GCTA, yielded a
genetic correlation of 0.60 between verbal and nonverbal
cognitive abilities at age 12. Despite the uncertainty of GCTA
estimation, together, the GCTA and twin results at age 12
suggest that most of the genes that affect verbal ability also
affect nonverbal ability and vice versa. Because verbal and
nonverbal abilities represent a major bifurcation of general
cognitive ability in the hierarchical model of intelligence, the
high genetic correlation between verbal and nonverbal abilities
implies that intelligence indexes generalist genes for cognitive
abilities, that is, the same genes largely affect these disparate
abilities. However, given that the twin-estimated genetic
correlation is less than 1.0 leaves possibility that some genetic
effects are not general across diverse cognitive abilities. As
mentioned earlier, it is not surprising to find that some genes
are specific to certain abilities —what is surprising is the great
extent to which the same genes affect such different cognitive
processes as those tapped by verbal tests of vocabulary and
information and nonverbal tests of picture completion and
progressive matrices.

At age 7, the results are not so clear. Although the twin study
estimate of the genetic correlation between verbal and nonver-
bal abilities is just as high (0.71) as at age 12 (0.60), the GCTA
estimate is only 0.31 at age 7, in contrast to 1.0 at age 12. It is
possible that there is a developmental trend of increasing genetic
correlations during childhood, as suggested in a few twin studies
(Plomin, DeFries et al., 2013). However, our twin analyses do not
support this hypothesis: Our genetic correlations are 0.71 at age
7 and 0.60 at age 12. Another possibility is methodological: Our
tests at age 7 were administered via telephone, whereas at age
12 web-based tests were used. Although it is possible that the
less traditional telephone tests show less genetic covariance as
information processing is limited to the auditory modality,
the phenotypic correlation between our verbal and nonverbal
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composites was only slightly less at age 7 (0.35) than at age 12
(0.45). That said, our twin analyses do not support this
possibility because genetic correlations are similar at ages 7
and 12. This somewhat surprising result needs replication in
larger sample before any further interpretations can be made,
and the large standard error of 0.32 for the GCTA estimates of
genetic correlation indicates the need for even larger samples
for definitive results.

It should be mentioned that a genetic correlation between
verbal and nonverbal abilities is pleiotropic at the descriptive
level of suggesting that the genetic effects on verbal ability
are correlated with the genetic effects on nonverbal abilities.
As with any correlation, a genetic correlation does not specify
the direction of causality — whether genes associated with
verbal cause the genetic effects on nonverbal or vice versa, or
whether genes associated with another trait cause the
genetic effects on both verbal and nonverbal abilities.

One limitation of the present research is that it focuses on
verbal and nonverbal composites rather than individual tests.
However, because verbal and nonverbal cognitive abilities are a
major bifurcation of general cognitive ability, they represent a
key point to test the general gene hypothesis. In addition, the
two verbal and two nonverbal tests at each age were designed
to create a reliable measure of general cognitive ability at each
age; we are stretching the data to create verbal and nonverbal
composites, but the individual tests were not meant to be
sufficiently reliable to stand on their own. Nonetheless, in the
Supplementary data, we have included univariate and bivariate
twin and GCTA results for the individual tests at both ages.
Although the results for the individual tests bounce around
considerably, especially for GCTA, they support the conclusions
reached from the verbal and nonverbal composites presented
in this report.

Another limitation of the present research is that it focuses on
traditional behavioral tests, rather than tests of elementary
processes such as information processing (Luo, Thompson, &
Detterman, 2006), cognitive experimental tasks assessing con-
structs such as working memory (Baddeley, 2012), or measures
of brain structure and function (Giedd & Rapoport, 2010).
However, the value of our focus, at least as a starting point for
research on generalist genes, is that these are the sorts of tests
widely used to assess intelligence. Multivariate genetic re-
search at the other levels is needed, as well as research farther
upstream at all the ‘-omic’ levels between genes and brain,
from transcriptomics and epigenomics to metabolomics and
proteomics. Twin andGCTA designs are crucibles for testing the
generalist gene hypothesis, and we predict that such research
will find that genetic effects are general at all these steps
between genes, brain and behavior. However, research at
these other levels will be difficult because of the daunting
demands for sample size, especially for GCTA analysis. Despite
our sample size of about 2000 individuals genotyped on a
million DNAmarkers, the standard errors of our GCTA estimates
are large, especially for estimates of genetic correlations; sample
sizes several times larger are needed.

One limitation of GCTA is that it only detects additive
genetic effects of DNA variants, whereas the twin method
captures nonadditive aswell as additive genetic effects because
identical twins are identical for DNA sequence variants. Details
about additive and nonadditive genetic variance can be
found elsewhere (e.g., Plomin, DeFries et al., 2013). Another
limitation is that GCTA can only detect the effects of
DNA variants tagged by (in linkage disequilibrium with)
common SNPs (minor allele frequencies greater than 1%)
incorporated in most DNA arrays. This limitation means that
the effects of rare DNA variants are likely to be missed, unlike
the twin method which summarizes the effects of all genetic
variants. However, these limitations of GCTA – that it can only
detect additive effects of common variants – imply that the
comparison between the results of GCTA and twin studies
provides important clues about how to identify genes respon-
sible for the heritability of complex traits. To the extent that
GCTA estimates of heritability are similar to twin study
estimates of heritability, it follows that heritability is due to
additive effects of common variants. This in turn indicates the
extent to which genome-wide association studies, which have
the same limitation as GCTA on additive effects of common
SNPs, should be able to close the gap between genetic effects
identified in genome-wide association studies and twin study
heritability estimates, called the missing heritability problem
(Maher, 2008). Our results at age 12 yield average GCTA
estimates of genetic influence that are half the twin study heri-
tability estimates, as reported previously for this sample
(Plomin, Haworth et al., 2013). This finding suggests that
additive effects of common variants can account for about half
of the heritability of cognitive abilities but nonadditive effects
and rare variants are also likely to be important.

GCTA is an important new tool to assess the net effect of
genes on variance and covariance in cognitive abilities, but
what is needed ultimately are the G, C, T, and A differences
that are responsible for the strong genetic contribution to
cognitive abilities. That is, nothing would advance the field
more than identifying some of the many genes responsible
for the heritability of intelligence. However, the identification
of genes associated with cognitive abilities and all complex
traits remains elusive (Chabris et al., 2012; Plomin, 2012). For
example, the first genome-wide association studies of g
(Davies et al., 2011; Davis et al., 2010) were powered to
detect SNP associations with g that account for as little as 1%
of the variance, but they came up empty-handed because the
associations of largest effect account for less than 0.5% of the
variance. Multivariate genetic research on cognitive abilities,
including the present twin and GCTA results at age 12,
suggests that most of the genetic action is general across
diverse cognitive abilities rather than specific to a single
ability. Intelligence is a good target for gene hunting because
it indexes these generalist genes.
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