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Pattern classification learning tasks are commonly used to explore
learning strategies in human subjects. The universal and individual
traits of learning such tasks reflect our cognitive abilities and have
been of interest both psychophysically and clinically. From a com-
putational perspective, these tasks are hard, because the number of
patterns and rules one could consider even in simple cases is exponen-
tially large. Thus, when we learn to classify we must use simplifying
assumptions and generalize. Studies of human behavior in probabi-
listic learning tasks have focused on rules in which pattern cues are
independent, and also described individual behavior in terms of
simple, single-cue, feature-based models. Here, we conducted psy-
chophysical experiments in which people learned to classify binary
sequences according to deterministic rules of different complexity,
including high-order, multicue-dependent rules. We show that
human performance on such tasks is very diverse, but that a class
of reinforcement learning-like models that use a mixture of features
captures individual learning behavior surprisinglywell. Thesemodels
reflect the important role of subjects’ priors, and their reliance on
high-order features even when learning a low-order rule. Further,
we show that these models predict future individual answers to
a high degree of accuracy. We then use these models to build per-
sonally optimized teaching sessions and boost learning.

inference | information | maximum entropy

We regularly learn to classify sensory stimuli into novel cate-
gories, often using an impoverished sampling of the stimulus

space and the underlying rule: even a “simple” task of classifying
patterns of n bits into two categories, requires an implicit mapping
of the 2n possible patterns, which means there are 22

n
potential

deterministic classification rules. It is clear then that when we learn
to classify, we cannot simply explore the space of rules and patterns,
but instead must rely on simplifying assumptions.
Analysis of human learning of deterministic classification rules

has focused on modeling of the average behavior of subjects (1–3),
and explored the effect of rule complexity on the average level of
success (4). Learning to classify according to a probabilistic rule is
inherently ambiguous, and so studies of such tasks have focused on
simpler rules than those used in deterministic classification. For
example, the weather prediction (WP) task (5) requires learning
probabilistic associations betweenmultiple cues and a label, where
each cue carries independent information about the correct label.
Analysis of the learning strategy of individual subjects in this task
has compared single-cue or single feature-based strategies, and the
possibility of switching between such strategies (6, 7). Associative
or Bayesian learning models that rely on simple stimulus features
were used to describe the diversity of individual learning dynamics
that subjects exhibited and compare between subjects (8), and
reflected differences between healthy subjects and patients (9, 10).
However, these models were mostly evaluated in terms of their
ability to describe subjects’ performance, rather than cross-vali-
dated predictive power. Second, the complexity of the rules
studied was limited (i.e., cues carried independent information).
Third, these tasks often relied on a strong bias in the presentation

rate of different patterns, which changes the available information
for subjects.
To characterize learning behavior of complex rules at the in-

dividual level, we used a psychophysical task of classifying binary
visual patterns into two abstract classes, with no bias in the set of
presented patterns. Our task involved only deterministic rules, but
included rules of different complexity, focusing on high-order
dependencies between elements in the pattern.We extended ideas
of feature-based learning (6, 11–13) to present a reinforcement
learning-like family of maximum entropy-based models to de-
scribe how individuals learn different high-order classification
rules. We found that these models capture individual behavior to
a high degree of accuracy, and can also predict individual behavior.
We then used such models, which were fitted to individuals during
a learning session, to pick the optimal samples to present them to
help them learn the rule faster.

Results
To characterize individual classification learning in terms of accu-
rate quantitative models, we presented 41 healthy subjects with
a psychophysical task in which they had to classify patterns of black
and white squares, into two abstract categories labeled “red” and
“blue” (Fig. 1A). The correct label of each pattern was determined
by a deterministic rule—a fact that was unknown to the subjects. In
each session, patterns of size n = 4 or 5 squares were presented one
at a time, and the correct label was shown after the subject classi-
fied the pattern. To enable quantitative analysis and comparison
between subjects, all subjects were presented with the same order
of patterns; moreover, each block of 16 examples (for n = 4, or 32
patterns in case n = 5) contained all possible patterns in a “frozen”
random order. Given the huge number of deterministic rules
(65,536 for n = 4, and 9 × 109 for n = 5), we chose six different
balanced rules (equal number of red- and blue-labeled patterns),
but of different complexity. Denoting the patterns as~x, where xi=±
1, and the label as y = ±1, the label of each pattern was determined
according to single, pairwise, or triple-wise dependencies between
the squares in the pattern, or according to “holistic” features of the
whole pattern (one-bit, two-bit, three-bit, majority, symmetry, and
middle symmetry rules; Fig. 1). Each subject performed four ses-
sions on the same day, with a different rule in each session.
The diversity of learning dynamics among subjects was wide,

ranging from no learning, to incremental learning, to abrupt
transition to full success. Fig. 1B shows the fraction of correct
answers as a function of time (over a running-average window) for
10 different subjects learning the same 1-bit rule (y = x3). Similar

Author contributions: Y.C. and E.S. designed research, performed research, analyzed
data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: elad.schneidman@weizmann.ac.il.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1211606110/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1211606110 PNAS Early Edition | 1 of 6

N
EU

RO
SC

IE
N
CE

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

mailto:elad.schneidman@weizmann.ac.il
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211606110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1211606110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1211606110


diversity of learning curves was seen for the other rules we tested.
Fig. 1C shows the average learning curve over all subjects for the
different rules, which reflect the average difficulty of each rule.
The large SDs over subjects result from the individual differences
between them; in particular, for each rule there was at least one
subject that failed to learn it, and no subject succeeded in learning all
rules. Theperformance for themajority rule demonstrates the strong
effect of the prior that subjects had, as 2 of 16 subjects learned the
rule without any mistakes, and another two made a single mistake
(12). The marked differences between the population learning
curves of the different rules reflect that memorization without
generalization can be ruled out as the sole mechanism of learning.

In SI Text, Ruling out Simple Memorization as the Strategy That
Subjects Use, we show that both gradual memorization and
pattern specific memorization can also be ruled out as pure
strategies.
Intuitively, one might assume that subjects seek distinctive fea-

tures in the patterns according to which they classify, as has been
studied in similar tasks (1, 4, 6). We therefore quantified the re-
lation between a set of different features of the patterns, fið~x Þ, and
subjects’ answers. Fig. 1 D and E show the mutual information
between subjects’ choices and pattern features, I(fi; answers) as
a function of time for different one-, two-, three-, and four-bit
features (this set is a complete basis from which one could linearly
construct any other feature). In a few cases, subjects indeed relied
on single features (Fig. 1D), but in most cases, they were using
a different strategy, which could be described as mixing of features,
or a very fast switching between features (Fig. 1E).
We therefore used a mixture model of these features, which are

a basis that can span any rule, to explore individual behavior and
characterize the effect of subjects’ priors on learning (Fig. 2A).
Using Bayes’ rule we can represent any probabilistic classifier of
pattern x into label y, in terms of “internal models” that a subject
has for each category c (the probability that pattern x belongs to
category c) as a weighted mixture of features of x,
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Fig. 1. Pattern classification learning task and diversity of individual perfor-
mance. (A) Setup of the psychophysical task. In each step of an experimental
session, a pattern of black and white squares was shown on a screen, and
subjects had 10 s to classify it as blueor red. Then the correct label of the pattern
was presented, and a new pattern was presented. (B) Diversity of individual
learning curves. The running average performance of 10 subjects classifying
patterns according to a one-bit rule,with the sameorder of patterns. For clarity,
we color-coded learning curves of subjects who demonstrated no clear im-
provement during the 128 patterns (blue), gradual learning (cyan), and abrupt
learning (magenta). (C) Average learning curves for different rules used. Each
panel shows the average learning curve over n = 12–39 subjects for one rule
used, y = yð~xÞ. Performance mean and SD over subjects were estimated in
blocks of 16 steps. (D) The mutual information between the subject’s choices
and different features of the pattern, estimated over running windows of 20
steps. This subject had a clear, single feature-based classification rule,whichwas
switched from one pairwise feature to another. (E) Same as in D, but for
a subject that did not have a clear single feature-based strategy.
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Fig. 2. Mixture model description and theoretical analysis. (A) Graphic rep-
resentation of the mixture of features-based model. The classifier is a hyper-
plane in the space of features, f, of the pattern x. The features mixture
coefficients, ~α, define the decision boundary plane in the features space. We
extract a global scaling parameter, β, which serves as the model’s confidence.
The logit form of Eq. 2 results from Bayes’ rule. (B) Graphic representation of
learning dynamics. At the start of the experimental session, subjects’ decisions
can be explained in terms of a hyperplane in the high dimensional space of
pattern features. During the learning process, this hyperplane is shifted and
rotated in the features space, getting it closer to the correct rule. (C) Model
performance as a function of η:β. Themeanmodel performance (blue dots) and
SD (gray bars) for a one-bit rule are computed using a random set of initial
conditions for each value of η:β. (i–v) Typical model learning curves.
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where fið~xÞ are features of ~x; αi are the weights given for each
feature, normalized such that the norm of~α is 1, β quantifies the
certainty or inverse “temperature”, and Zc is a normalization
factor, or partition function. This form of exponential functions
is commonly used in machine learning, statistics, psychophysics,
and neuroscience (14–16). We note that for a specific choice of
features, this is the maximum-entropy distribution of~x, given the
average value of that set of features in each category, hfið~xÞic.
The classifier p(yjx) is then given by

P
�
y= 1j~x�= 1

1+
Z1

Z−1
exp

�
β
�
~α ·~f

�
~x
�
+ γ

��; [2]

where γ is given by the category prior, Pðy= − 1Þ
Pðy= 1Þ = eγ , ~α=~α−1 −~α1,

and Z1 is the partition function of label 1 in Eq. 1. This model can
describe any classifier and learning dynamics in terms of arbitrary
changes to each of the αis at each time-step.
Importantly, to find a compact and useful representation of

individual learning in terms of a subject’s prior and simple set of
learning parameters, we used a very restricted version of learning
the model described by Eqs. 1 and 2. Instead of changing the
weight of each feature independently, we consider models in which
learning occurs by changing all αis in a coupled way, according to a
single learning rate and a gradient-based rule: given a labeled ex-
ample, the change in weights is given by

Δαci = η
∂ log P

�
yj~x�

∂αic
= − η

�
1−P

�
yj~x�� · �<fi�~x�> pð~xjcÞ − fi

�
~x
��

· y · c;

[3]

where η is a single static learning rate, hfiipð~xjcÞ is the expected value
of feature fi over the model distribution given by Eq. 1, and γ has
a similar learning rule as inEq. 3. Thus, themodel starts with a prior
set of weights for each of the features αi at t = 0, and then updates
the weights according to a learning rule that can be interpreted as
a product of a standard reinforcement learning term (13, 17) and
a gradient-based term. Thus, the parameters of our models are just
the prior at t = 0 and two static parameters: the certainty β and
learning rate η (Fig. 2B). We note that this is a generalized form of
the models used by Speekenbrink and Shanks (11) for theWP task,
but here they include a specific prior term and high-order features.
These models can exhibit a wide range of learning dynamics,

which we mapped by simulating the performance of models with
different values of η and β on different rules, with a large set of
diverse priors. Fig. 2C shows the success rate of the simulated
models in learning the one-bit rule (Fig. 1C) as a function of the
ratio η:β. We found that for low η:β, the prior dominates the
model’s behavior. For large η:β, the prior has no effective role,
because the learning rule is overfitting to the last seen sample,
resulting in poor generalization. Optimal learning in this case
would occur at η:β ’ 0.1, which would balance the prior with
appropriate learning rates. (We show in SI Text, Dependence of
Learning in the Mixture of Features Model on η:β, that the ratio η:β
dominates the learning dynamics of these models).
We thus fitted the subjects’ learning sessions with our mixture

of features model, and found that the detailed structure of their
individual learning curves can be approximated to a high degree
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Fig. 3. Mixture of features models accurately describe individual perfor-
mance and predict subjects’ future answers. (A) Examples of models’ fit to
individual subjects. The subjects’ learning curves (blue lines) compared with the
fitted machine expected learning curves (purple lines) and its SD (pink area) (B)
Fraction of each individual’s answers that agree with those of the fitted model
(gray dots) was computed using the most likely answers. The red markers and
bars show the population mean and SD. (C) For each individual model we
estimate how typical the empirical answer sequence was by dividing the
agreement between the model and answers by the expected SD of the
model’s answers. These Z-score values are estimated for each individual session
and subject (gray dots), and the red markers and bars are the population’s
mean and SD. (D) Examples of models’ prediction of individual subjects. The
subjects’ learning curves (blue lines) compared with the fitted machine
expected learning curves (brown lines) and its SD (light brown area), and the
predicted learning curve (purple lines) and its SD (pink area). (E) Fraction of
answers predicted correctly in the second half of the trial, based on a model

that was fitted in the first half. Gray dots mark the fraction of agreement for
each session, and the red markers and bars are the population’s mean and SD.
(F) As in C, Z-score values for predicted answers.
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of accuracy. Specifically, for each subject and session, we used
a heuristic approach to find the best prior and combination of β
and η values that would maximize the likelihood of the observed
sequence of answers (Methods). Fig. 3A shows examples of the
high similarity between the empirical learning curve of subjects and
the expected learning curve of the model that was fit to them.
Because the models are probabilistic, we estimated the variance of
themodel’s learning curve, and found that themodels are almost as
similar to the observed behavior as one could expect. Fig. 3B shows
the overlap in answers between subjects and the models that were
fit to them, for all rules. Averaging over all rules and subjects, the
accuracy was 87%; the average overlap for the different rules
ranged from 80% to 98%. To further validate the accuracy of the
model, we asked, how typical is the observed sequence of answers
according to the model we fitted? Fig. 3C shows the overlap be-
tween the model and the empirical answers, normalized by the SD
of the model’s predictions. The Z-score values show that the de-
viation between models and the data were within the probabilistic
variance expected from the model.
Though our model relies on a spanning set of features, it is

possible that subjects do not use or have access to all these features.
We asked then how removing features from the basis set of the
model would affect the accuracy and predictive power of the model.
We found that mixture models that used only single-bit or pairwise
features were significantly less accurate than models that used
higher-order features in fitting subjects’ behavior (Fig. 4), almost
regardless of rule complexity. A more general learning rule, which
evaluated the change in~α based on feature values over a window of
several examples hfið~xÞiW , rather than just the last one, did not
significantly improve our results. Neither did other reinforcement
learning models and neural network-based ones (SI Text, Compar-
isons of the Mixture of Features Model to Other Models and Effect of
the Length of the LearningWindow on theMixture of FeaturesModel).
We asked then whether our models can predict individual be-

havior. Fig. 3D shows examples of the agreement between the
subjects’ learning curves on the second half of the session, and the
most likely learning curves predicted by the model that was fit just
to the first half of that session. On average, we predicted ∼75% of
the future answers (Fig. 3E). Fig. 3F shows Z-score measures of
the prediction accuracy, reflecting that though these models are
missing some part of the subjects’ learning dynamics, they are very
informative of individual subjects.

Having a predictive model of a subject’s future behavior suggests
that we could use the model to estimate which patterns would be
most useful for the subject in terms of learning the rule. We thus
repeated the same experiment, but now presented to the subjects
a personalized sequence of patterns in the fourth block of samples.
To determine the individual set of patterns we should show each
subject, we used the first three blocks (where all subjects had the
exact same patterns shown to them) to fit a mixture model to each
subject (online). If we now assume that the model is an accurate
predictor of the subject’s behavior, we can simulate the effect of any
sequence of patterns in the fourth block on learning.We then sought
the optimal set of patterns to present the subject in that fourth block
(“personalized training block”) that would result in the most accu-
rate classifier at the end of that block, according to the model. In SI
Text, Pattern Specific Performance Before Personalized Training Block,
and the Order of Patterns in That Block, we show that the optimal
sequences used in the fourth block did not take a trivial form and
also contained patterns that were classified well in the first three
blocks. To evaluate the effect of the individually chosen group of
patterns, all subjects had the exact same patterns shown to them in
blocks 5–8.We found that both the test group and our control group,
which were presented with a random set of patterns in the fourth
block, improved during the session. However, the test group showed
a significant improvement in the two blocks following the in-
tervention (unpaired t test, P < 0.04; Fig. 5). The control group
closed this gap later in the session. In SI Text, Optimality of the
Personalized Training Sequence: Comparison with Alternative
Models, we show that choosing the sequences according to other
models is expected to give worse learning improvement. Thus, we
succeeded in boosting individual performance by personalized,
model-based teaching.We note that this approach resembles ideas
from optimal sampling and active learning in statistics and ma-
chine learning (18, 19, *), which suggest future analysis of optimal
exploration and exploitation strategies in learning.
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*Roy N, McCallum A (June 28–July 1, 2001) Toward optimal active learning through
sampling estimation of error reduction. Proceedings of the 18th International Confer-
ence on Machine Learning (Morgan Kaufmann, San Francisco), pp 441–448.
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Discussion
We have shown that in a pattern classification task, human per-
formance can be described to a high degree of accuracy by a
probabilistic model that dynamically adapts the weight subjects
give to different features of the patterns. These models rely on
a prior and two static parameters, and were accurate enough to
enable personally tailored teaching, by picking for individual
subjects the best patterns to show them to help them learn.
Our results reflect the important role of the prior that a sub-

ject has in such learning tasks (12), and that these priors already
rely on high-order correlations in the patterns that the subjects
classify. This finding suggests that subjects’ history and experi-
ence are instrumental in shaping their learning.
We note that it is possible that more-detailed models, in par-

ticular using adaptive learning rates (η) or subject’s certainty (β),
could result in better fit for the subjects’ answers and predictive
power of the model. However, we submit that the power of the
current approach is in its relative simplicity.
The mathematical nature of our models suggests that learning

may be seen as a dynamic weighting of “experts” † by combining,
linearly, prototypes of the stimulus or exemplar representation of
the stimulus space (2, 20, 21) (SIText,MixtureModel as a SimpleCase
of Prototype or Exemplar Representation). Because the classification
rule could rely on an arbitrary feature of the patterns—and, in par-
ticular, some of the rules we studied were nonlinear functions of
simple features of the patterns (in contrast to refs. 5 and 22)—our
model included in the mixture a set of features that allowed de-
scribing any rule, i.e., a spanning set of features. This features set
could correspond to neural correlates of decision-making (23, 24),
probabilistic inference (13, 25), and learning and strategy shifts (26,
27) that were observed in single-unit recordings in primate and
mammalian cortex. Seeking neural correlates of themodel presented
here would be of particular interest in light of the characterization of
the role of memory systems involved inWP (28, 29) and other learn-
ing and decision-making tasks (30, 31), and theoretical models of in-
cremental learning through spike timing-dependentplasticity (32, 33).

Methods
Subjects. A total of 78 healthy adults (34 male) between the ages of 22 and 42
performed four learning sessions, taking short breaks between sessions, for
a total duration of ∼1 h. The experimental setup was explained to all subjects
before the first session, and they went through one brief training session. The
detailed nature of the complexity of classification rules was not discussed with
the subjects. Subjects signed a formal participation agreement according to
Helsinki protocol TLV-0287-09 approved by the Weizmann Institute’s in-
stitutional review board. Subjects were rewarded for participation, regardless
of their performance. SI Text, Instructions to Subjects in the Pattern Classifi-
cation Task, contains the instructions that were given to the subjects.

Experimental Setup. Stimulus presentation, feedback, and recoding of re-
sponses was done using MatLab (MathWorks) and Psychtoolbox (34) on a
standard desktop computer (Intel-based operating system: Windows XP, 4 GB
RAM). Subjects indicated their choices using a standard computer mouse.

Behavior analysis. Subjects’ answers were binary and so their performance
was measured via (i) learning curves, using a moving average window of 16
steps to smooth the stepwise performance, and (ii) block averages, aver-
aging the performances in consecutive blocks of 16 steps.

The mutual information between the subject’s choice, r, and the value of
a parity feature, fJð~xÞ=∏j ∈ Jxj , is estimated from the empirical estimation of
the rates, P(r, fJ), as

Iðr; fJÞ=
X
r=±1

X
fJ=± 1

Pðr; fJÞ · log2

�
Pðr; fJÞ
PðrÞPðfJÞ

�
: [4]

Modeling. The model’s learning dynamics is given by a gradient ascent step
(Eq. 3) as described in the text, followed by renormalizing j~αc j=1.

For a given set of model coefficients, Θ, including a prior, ~α−1, ~α1 at t =
0 (γt = 0 = 0), a certainty, β, and a learning rate, η, the learning algorithm
produces a set of decision probabilities, Pðyt = 1j~xt ;ΘÞ, for the patterns
sequence f~xtg128t=1 . We then use these for model-fitting and prediction of
future answers.

Model-fitting. We treat the subject’s sequence of answers, frtg128t=1, as a realiza-
tion of the binomial independent random variables, pt ∼Binomð1; Pð1jxt ;ΘÞÞ,
and fit each session of each subject with a model that maximizes the
log-likelihood:

LðΘÞ=
X128
t =1

log Pðpt = rt jxtÞ: [5]

Because this function is not concave, we heuristically looked for the optimal
point, Θ*, by maximizing the likelihood through a combination of a genetic
algorithm and simulated annealing.

Prediction of subjects’ future behavior based on their individually fitted model.
For prediction we fit the model based only on the first 64 answers in a session.
We then estimated the agreements between themodel and the subject as the
fraction of subject answers that match the model’s most likely answers,

a= Ært=sgn
�
Pð1jxt ;ΘÞ−1

2

�
æt∈T . When estimated, the expected agreement if

the subject’s answers were indeed a realization of the model’s decision
probabilities, μ =〈max(P(1jxt; Θ), 1 − P(1jxt; Θ))〉t∈T, and its SD,

σ = 1
jT j
hP

t ∈ T Pð1jxt ;ΘÞ · ð1− Pð1jxt ;ΘÞÞ
i1=2

; we used these to estimate the
Z-score, z= a− μ

σ , as a measurement of difference between the subject and
the model.

Personalized Teaching. Subjects had to learn a two-bit rule (with n = 4). All
of the subjects were presented with the same patterns, except for the
fourth block, in which they were shown a sequence of patterns that was
optimized for them individually. To fit the model online, we prepared a
set of 80 million candidate models, covering a large region of parameter
space, for which we stored the decision probabilities for learning steps
1–48 and the most helpful sequence for steps 49–64. The most helpful
sequences were found using a Glauber dynamics search (35) that aimed
to bring the models to the closest point to the target rule. While subjects
performed steps 1–48, their answers were transmitted, using transmission
control protocol/internet protocol, to another computer that calculated
the best fit among the 80 million models and transmitted back the pat-
terns sequence for the fourth block. The entire transmission duration was
always less than the waiting time between samples (1 s), and so did not
affect the session progress.
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