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Various biological correlates of general intelligence (g) have been reported. Despite this, however, the relationship
between neurological measurements and g is not fully clear. We use structural equation modeling to model the
relationship between behavioral Wechsler Adult Intelligence Scale (WAIS) estimates of g and neurological
measurements (voxel-based morphometry and diffusion tensor imaging of eight regions of interest). We discuss
psychometric models that explicate the relationship between g and the brain in a manner in line with the scientific
study of g. Fitting the proposed models to the data, we find that a MIMIC model (for multiple indicators, multiple
causes), where the contributions of different brain regions to a unidimensional g are estimated separately, provides
the best fit against the data.
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Although technological advances have expanded the
possibilities for empirical research, the nature of the
relationship between intelligence and the brain remains
a contentious topic. This is partly an embarrassment of
riches, as the list of properties that correlate with gen-
eral intelligence is daunting. Research has shown that
gray matter density, white matter integrity, skull
volume, cortical thickness, uric acid levels, height,
lower amplitude in the averaged evoked potential (a
measure derived from the EEG signal), increased and
decreased neural activity, functional efficiency, and
nerve conduction velocity are associated with g
(Deary, Penke, & Johnson, 2010; Jensen, 1998; Jung
& Haier, 2007; and references therein). In this paper,
we aim to structure these findings by proposing a new
modeling framework for studying the relationship
between behavioral measurements of general intelli-
gence and neurological measurements of the brain.

The interpretation of the term “intelligence” is
itself the topic of several long-standing debates
(Mackintosh, 1998). For purposes of clarity, we focus
on the interpretation of intelligence that is statistically

most clearly defined, namely as the general factor of
intelligence (also known as “g”). We consider g to
represent a common source of variance in general
cognitive ability. Studying the brain in relation to g,
some researchers have coined the phrase “neuro g”
(Haier et al., 2009). This suggests a strong thesis,
namely that there is some fundamental biological sub-
strate that acts as a common cause of individual varia-
bility in performance on a wide variety of cognitive
tests. From this point of view, we could consider the
search for neuro g a quest for “[t]he substrate of human
intelligence” (Luders, Narr, Thompson, & Toga, 2009,
p. 156), undertaken “[t]o capture the essence of a
neural basis of intelligence” (Jung & Haier, 2007,
p. 178). The above suggests that the aim of neuroscien-
tific research on intelligence is not just to find some
(neurological) property that correlates with a common
factor extracted from a battery of IQ-test scores, but
rather showing g to be a physical property of the brain.

Recent studies have extended the focus from single
measures to integrating multiple lines of evidence.
These approaches have combined structural and
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functional data (Choi et al., 2008), structural and func-
tional networks (Li et al., 2009; van den Heuvel, Stam,
Kahn, & Hulshoff Pol, 2009), and genetic modeling
(Chiang et al., 2009). These approaches show that the
synthesis of different techniquesmay be necessary to get
a handle on the nature of g and the brain. Despite many
advances, however, the identification of a neural prop-
erty that could be identified with g has not been forth-
coming. This has led some scholars to question whether
any simple identification should be expected. For
instance,Bartholomew (2004) suggests thatg is not itself
a physical characteristic of the brain, but rather a function
of a set of distinct brain characteristics.

The distinction is comparable to the distinction
between the length (height) of a person and his or her
physical fitness. If g is similar to “length” (albeit more
difficult to measure), then what we have to discover is
how to best measure g in the brain, with the least
amount of measurement error. However, if g is more
similar to something akin to “physical fitness,” then
searching for a single physical property is ill-advised:
Although physical fitness depends on a range of phy-
sical properties (e.g., lung capacity, metabolic rates,
energy efficiency), the construct of “physical fitness”
is best seen as a composite function of these character-
istics, and cannot be identified with any single char-
acteristic. If the latter perspective is more accurate, then
neuroscientific research on g should not be interpreted
as an attempt to find out what g is (i.e., which neural
property uniquely defines g), but as a search for a
possibly large and heterogeneous set of properties
that together determine g.

Clearly, the relationship between g and the brain
can be studied from a wide range of assumptions and
hypotheses. However, these assumptions are not
always made explicit. In this paper, we show how
different assumptions and interpretations can be trans-
lated into testable psychometric models. Structural
equation models (SEM) have been used profitably in
analyzing functional neural systems (e.g., McIntosh &
Gonzalez-Lima, 1994). Excellent introductions in the
application and interpretation of SEM include Bollen
(1989) and Kline (2005). We use SEM in a new way
by modeling various competing hypotheses for the
relationship between observed and latent variables
of g and the brain. We will examine the relationship
between a set of representative regions of interest
(ROIs) to study which models, with which implica-
tions, best represent the empirical data. We first dis-
cuss a number of candidate models for representing
the relationship between neurological and psycholo-
gical measurements.

METHODS

Models

We use SEM to fit the following candidate models
representing different assumptions and interpretations
against the data.

Neuro g 1: Same concept, new measures

The first psychometric interpretation of neuro g
considers neurological measurements to depend on
the same property as has traditionally been measured
with psychometric instruments (i.e., g, as measured
through IQ tests). Themeasurement model correspond-
ing to this interpretation is shown in Figure 1.

From this perspective, one can consider neurologi-
cal measurements (by means of brain scans) to be a
new, potentially more precise way of measuring the
same property (in this case, g). This model entails
several statistical characteristics and conceptual impli-
cations explained in more detail in Kievit et al. (2011).
This is the simplest model considered here, and is most
in line with terminology stressing “the neural substrate
of g”or the “biological essence of g.”

Neuro g 2 and Neuro g 3: Different properties,
different measures

Another conceptualization represents neuro g as a
latent variable distinct from psychometric g. It can be
seen as the biological “cousin” of psychometric g, and,
as such, is a different property.

From this perspective, represented in Figure 2,
neuro g is a latent variable that represents a

Figure 1. Neuro g 1. Reflective, unidimensional representation of
neuro g. Neuro g is the same property as g, estimated by both
psychological (P) and neurological (N) indicators, with factor load-
ings (lambda) and residual terms (epsilon) estimated empirically.
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unidimensional neurological factor, measured by a set
of neurological variables. This neuro g can be seen as a
“property of the brain” that is relevantwith respect to g,
but not identical to it.

Hence, this model offers a different interpreta-
tion of the term “neuro g”: namely, as a property of the
brain that can be estimated by neurological measure-
ments, and that correlates with g to an extent assessable
by empirical study. The purpose of empirical research

then is to discover which neurological properties (for
instance, “gray matter density in region X,” or “white
matter integrity in area Y”) covary together in a popu-
lation such that this “neuro g” correlates most highly
with g. As such, it could be interpreted as a latent factor
that might be called “brain fitness.” This perspective
can take two psychometrically similar but conceptually
distinct routes. In the first route, a single latent variable
is conceived of as the aggregate of “brain fitness”
variables. Versions of this model were implemented
by MacLullich et al. (2002) and Penke et al. (2010).
In the second route, one utilizes multiple “neuro g”
factors, attempting to caputre the dimensions along
which people can vary neurologically. This conceptua-
lization is represented in Figure 3 (neuro g 3) below, in
this case with two latent neuro g’s, although it could be
extended to include more factors if necessary.

Allowing for multiple latent variables has two
additional benefits: Firstly, this may be more neurolo-
gically plausible, as it does not require all neurological
measurements to be monotonically related, as do mod-
els 1 and 2.

Secondly, such separate latent variables would
allow for more substantive interpretation. It may be, for
instance, that one neurological latent variable repre-
sents an estimate of “perceptual organization,” another

Figure 2. Neuro g 2. Neuro g as a separate latent variable, estimated
by a unidimensional constellation of neural indicators. The correla-
tion with psychometric g can be assessed empirically. If this correla-
tion is 1, this model is equivalent to model 1.

Figure 3. Neuro g 3. A combined EFA/CFA model. The dimensionality of the neurological indicators, in this case, eight measures, is estimated
in an EFA. The resulting two factors are correlated with psychometric g. This model can be extended to include a broader sample of neurological
indicators. For visual clarity, the lambdas for the EFA (top part) are not drawn. EFA, Exploratory factor analysis; CFA, Confirmatory factor
analysis.

THE SEARCH FOR NEURO g 3

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f S

ou
th

am
pt

on
 H

ig
hf

ie
ld

] a
t 0

8:
55

 1
8 

Ja
nu

ar
y 

20
12

 



represents “processing speed,” and yet another repre-
sents “verbal ability.” Attempting to model such latent
variables may allow researchers to get a grip on the
structure of different neurological dimensions along
which people differ, and this would in turn facilitate
interpretation and comparability across studies. This
method may also be particularly appropriate for study-
ing lower order factors such as spatial or verbal ability.
Previous research suggests that although cognitive
abilities are positively correlated, they may rely on
different neural subsystems. If this is the case, it is
worth examining the psychometric structure of neuro-
logical variables at the level of these lower-order fac-
tors. Those neural indicators that covary positively
with a lower order factor may be especially insightful.
For instance, Henson (2005) discusses how neurologi-
cal and behavioral measurements may together be able
to distinguish between theories that propose either a
unitary short-term memory factor or more than one
lower-order memory factor, based on convergence of
neuroimaging and behavioral data.

Of course, the structure of covariation between
different neurological measurements and their relation
to higher- or lower-order ability factors will depend on
the nature of those indicators. For instance, that the
development of white matter in different regions of the
brain, at least in early life, is based on similar genetic
mechanisms may suggest that there will be a higher
degree of similarity between such measurements
within an individual than between, say, white and
gray matter values in the same brain region. Such
considerations need to be taken into account when
modeling. However, the structure of covariation of
neurological measurements is ultimately an empirical
question, and it is exactly the study of such covariance
that may provide valuable insights regarding the neu-
rophysiology of the brain and g.

Neuro g 4: The brain determines differences in g

A final psychometric possibility we consider here is
offered by a so-called MIMIC model (for multiple
indicators, multiple causes) (Jöreskog & Goldberger,
1975). This model represents an asymmetrical relation-
ship between cause (formative) and effect (reflective)
indicators (cf. Edwards & Bagozzi, 2000). From this
perspective, represented in Figure 4, psychometric g is
determined by a constellation of neurological proper-
ties, but measured by psychological variables (e.g. an
IQ test).

Here, the neurological properties do not measure
but together form or determine an individual’s score
on g, akin to the “physical fitness” example discussed
previously. This is in line with conceptualizations

where g is seen as something that is determined by a
constellation of brain properties (Bartholomew, 2004).
The model is also biologically less restrictive, as it
allows for covariance between neurological measure-
ments beyond those explaining variance in g; the neu-
rological part of the model does not have to be
unidimensional. The MIMIC model therefore may
more naturally accommodate “brute facts” about the
physiology of humans with respect to g. However, the
model does assume that the neurological indicators
have been measured without error, and this may be
unrealistic.

Sample

The data consisted of a sample of 80 participants (29
males, 51 females) who completed the Dutch version
of the WAIS-III––a fully validated, translated version
of the original WAIS (Wechsler Adult Intelligence
Scale) (cf. Wechsler, 2005). Participants, who ranged
from 18 to 29 years old, with a mean age of 21.1 years
(SD ¼ 2.55), received either a financial reward or
course credits for their participation. The participants

Figure 4. Neuro g 4. A MIMIC model representation of the rela-
tionship between g and the brain. The neurological indicators
together determine psychometric g. The relative weights of the gam-
mas are estimated based on the g indicators––in this case, the WAIS
sum scores. MIMIC, Multiple Indicators, Multiple Causes; WAIS,
Wechsler Adult Intelligence Scale.
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were tested in accordance with the ethical guidelines
of the American Psychological Association, and the
study was approved by the University of Amsterdam
Ethics Committee. The behavioral measurements con-
sisted of four domain indices (Verbal Comprehension,
Perceptual Organization, Working Memory, and
Processing Speed) of the WAIS-III. In addition to
the completion of the WAIS-III, all participants were
scanned in a 3 Tesla Philips Intera MRI scanner to
estimate white matter, gray matter density, and brain
volume measurements in eight ROIs.

Image acquisition

Participants were scanned on a 3-T Philips Intera scan-
ner, and all data were analyzed using FSL (Smith et al.,
2004), MATLAB (Version 7.10.0, The Mathworks,
Inc., Natick, MA, USA), and Mplus (Muthén &
Muthén, 1998–2007). A structural MRI scan of each
participant was acquired by using a T1-weighted 3D
sequence (Turbo Field Echo, TE 4.6 ms, TR 9.6 ms, FA
8!, 182 sagittal slices of 1.2 mm, FOV 2502 mm,
reconstruction matrix 2562).

Image analysis

The structural data were analyzed with voxel-based
morphometry (VBM) carried out with FSL (Smith
et al., 2004). First, structural images were brain-
extracted (Smith, 2002). Next, tissue-type segmenta-
tion was carried out with FAST4 (Zhang, 2001). The so
obtained gray-matter partial volumes were then aligned
to MNI 152 standard space using the affine registra-
tion. The resulting images were averaged to create a
study-specific template, to which the native gray-
matter images were then nonlinearly reregistered with
a method that uses a b-spline representation of the
registration warp field (Andersson, Jenkinson, &
Smith, 2007; Rueckert et al. 1999). The registered
partial volume images were modulated (to correct for
local expansion or contraction) by dividing by the

Jacobian of the warp field. The modulated segmented
images were smoothed with an isotropic Gaussian ker-
nel with a sigma of 4mm. In addition, a DWI (diffusion
weighted imaging) scan was run (echo planar imaging,
TE 94 ms, TR 7.720 ms, FA 90!, 40 slices, FOV 2242,
reconstruction matrix 1282). The diffusion tensor ima-
ging (DTI) data were also analyzed with FSL, now
using the TBSS (Tract Based Spatial Statistics) package
(Smith et al., 2006). The above procedure was applied to
the first and second T1 and DWI scans separately,
creating two data sets that are independent from the
perspective of noise. The first data set was used to
identify ROIs. Threshold-free cluster enhancement was
applied to all data sets (Smith & Nichols, 2009). Data
were further thresholded at a value of p < .01 (minimum
cluster size 50 mm3) for DWI data and p < .01 (cluster
size 800 mm3) for VBM data. The second data set was
used to extract the actual values from the ROIs yielded
by the first analysis. In this way, these ROIs were not
artificially inflated in terms of statistical fitting. From
both the VBM and DTI data, the two ROIs that were
strongest positively correlated with the FSIQ score on
the WAIS-III, and the two ROIs that were strongest
negatively correlated with FSIQ were used for further
analysis. This procedure resulted in eight ROIs (four
VBM and four DTI measures), of which the MNI coor-
dinates of the center of gravity are in Table 1. All these
ROIs have previously been associated with individual
differences in general cognitive abilities (cf. Deary et al.,
2010; Jung & Haier, 2007, and references therein);
Brodmann’s area (BA) 9 bordering on 46, BA area 9
bordering on 48, BA area 20, and BA area 18. The DTI
loci were also in accordance with previous findings,
such as for the inferior fronto-occipital fasciculus and
various sections of the corpus callosum.

RESULTS

We report results for four latent variable models,
which were fitted using Mplus (Muthén & Muthén,
1998–2007) by maximum likelihood estimation. In a
covariance structure analysis, the model-implied

TABLE 1
MNI coordinates, voxel count, and morphological description of four VBM and four DTI measures

Measure Region X coordinate Y coordinate Z coordinate N voxels

VBM 1 9 and 46 29 41 32 985
VBM 2 9 and 48 -41 22 44 565
VBM 3 20 38 -12 -39 117
VBM 4 18 21 -91 22 184
DTI 1 Callosal body (directly below the basal ganglia) -9 15 -11 86
DTI 2 Inferior fronto-occipital fasciculus -40 -22 -7 50
DTI 3 Corpus callosum -14 -4 33 114
DTI 4 Corpus callosum -18 -25 36 106
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covariances are compared to the observed covariances.
Fit indices represent the deviation or misfit of the
observed covariance structure. We evaluate model fit
by means of the chi-square test of model fit, the root
mean square error of approximation (RMSEA), the
comparative fit index (CFI), and the Bayesian informa-
tion criterion (BIC). For discussions on the relative
merits of these fit indices, see Schermelleh-Engel,
Moosbrugger, and Müller (2003).

For the SEM analyses, a total of 12 observed vari-
ables were modeled: four domain scores of the WAIS-
III, and measurements of four VBM, and four DTI
ROIs. The WAIS sum scores were as follows: Verbal
Comprehension (M ¼ 117.16, SD ¼ 9.78), Perceptual
Organization (M ¼ 112.10, SD ¼ 11.31), Working
Memory (M ¼ 111.32, SD ¼ 13.11), and Processing
Speed (M ¼ 116.38, SD ¼ 14.80). We implement a
simplified, nonhierarchical g model here for purposes
of simplicity and model fitting. This model may be
extended to include latent first-order factors without
affecting the core ideas of the models.

To ensure that the indicators of g variables are
psychometrically adequate, we first fit a confirmatory

model with the four WAIS sum scores and one latent g
factor. The chi-square test of model did not reject the
one-factor model of g χ2 (2, n ¼ 80) ¼ 2.15, p > .30.
This fit was corroborated by the other fit indices,
RMSEA (0.031) and CFI (0.996). We then fitted the
four models discussed previously. Table 2 shows the
resulting fit statistics. The standardized parameter esti-
mates for all four neuro g models are presented in
Table 3.

First, consider the simple, reflective model, in
which all indicators are considered to reflect g. This
model does not fit: It is rejected by the chi-square test,
and other indicators corroborate this poor fit. That is,
for this data set, neurological measurements cannot be
considered measurements of g. Naturally, this may be a
contingent fact about our data set. However, we think
that the multifaceted nature of neurological properties
that covary with g make this model an unlikely candi-
date for other data sets as well. For model 1 then, the
report seems dire: Although this representation is in
line with the terminology of “neuro g,” it is not plau-
sible a priori, and fits poorly when tested in a represen-
tative data set. In summary, these data indicate that

TABLE 3
Standardized parameter estimates for four fitted models. The final model contains two neural factors, loadings of which are

represented side by side

Indicator CFA g model 1 (neuro) g 1 g, 1 neuro g MIMIC 1 g, 2 neuro g

Verbal Comprehension 0.591 0.689 0.685 0.675 0.705
Perceptual Reasoning 0.779 0.659 0.646 0.639 0.684
Working Memory 0.486 0.545 0.544 0.534 0.511
Processing Speed 0.476 0.442 0.442 0.479 0.387

Factor 1 Factor 2
VBM 1 0.3 0.315 0.295 -0.1 0.183
VBM 2 0.284 0.284 0.205 -0.336 -0.015
VBM 3 -0.471 -0.441 -0.051 1.07 0.002
VBM 4 -0.372 -0.35 -0.238 0.593 -0.036
DTI 1 0.514 0.483 0.161 -0.171 0.628
DTI 2 0.554 0.539 0.419 0.008 0.828
DTI 3 -0.218 -0.232 -0.248 0.065 -0.095
DTI 4 -0.224 -0.235 -0.224 0.013 -0.089

TABLE 2
Model fits for the four fitted SEM models. Selection of fit indices are based on Schermelleh-Engel et al. (2003)

Model Description N df chi-square p-value RMSEA CFI BIC

1 Reflective 80 54 119.98 0 0.124 0.629 7151.139
2 1 neuro g, 1 g 80 53 119.684 0 0.125 0.625 7155.224
3 1 g, 2 neuro g 80 45 72.979 0.0052 0.088 0.843 2738.439
4 MIMIC 80 26 32.194 0.1868 0.055 0.936 -39.174

Note:Df, Degrees of freedom; RMSEA, Root Mean Square Error of Approximation; CFI, Confirmatory Fit Index; BIC, Bayesian Information
Criterion.
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neuro g should not be taken to refer to a unidimensional
constellation of neural properties identical to g.
Whether or not other constellations of neural indicators
not explored in this study will fit such a unidimensional
factor coincident with g is an empirical question that is
still open, but, for the reasons we give above, we do not
consider it very likely.

Model 2, shown in Figure 2, represents neuro g as a
separate latent variable that correlates with g.As can be
seen in Table 2, this model was also rejected for our
data set, reflecting the lack of unidimensionality in the
neurological measurements. That is, at least in this data
set, a constellation of neurological measurements can-
not be considered a unidimensional property of indivi-
duals, akin to a kind of “brain fitness factor.” Despite
the fact that these measures correlate independently
with g, they do not intercorrelate positively.

Model 3 (shown in Figure 3) estimates multiple (in
this case, two) latent neural factors that correlate with
g. To fit this model, we implemented a new method
available in Mplus, namely a combined exploratory
and confirmatory factor analysis. As Table 2 shows
(model 3), this model is also rejected, although the fit
is considerably less poor than the fit of models 1 and 2.
This model, although rejected for this data set, seems
more intuitively plausible and offers more in the way of
interpretation, and in our view may well be an option
worth considering for further research.

Finally, we consider the formative, or MIMIC
model, as represented in Figure 4. This model is not
rejected by the chi-square test of model fit, and other

indicators also represent adequate to good fit (see
Table 2, model 4). For this data set, we can consider
neurological measurements to jointly predict a unidi-
mensional g, although they do not themselves form a
unidimensional scale. This situation is consistent with
the idea that the neurological properties together deter-
mine individual differences in g. Figure 5 shows this
best-fitting model, including standardized parameter
estimates of each of the neural indicators.

Based on this data set, the simplest candidates for
neuro g are rejected. The more complex models, which
either attempt to capture several latent dimensions of
neurological covariation (model 3) or model an asym-
metric relationship between g and the brain (model 4),
perform better.

GENERAL DISCUSSION

Neuro g is unlikely to be a physical characteristic of the
human brain as measured by our neurological indica-
tors, and it is also unlikely to be a unidimensional
physical variable correlated with psychometric g.
More complex models are needed to explain the joint
covariance structure of neurological and behavioral
measures. These models feature either an asymmetric
relationship between g and the brain, or capture several
dimensions of covariation. Thus, it seems at least unli-
kely that there is a simple “neuro g”. Of course, these
conclusions are partly contingent on the data we
acquired here: It may be that other data sets yield

Figure 5. The best-fitting model: a MIMIC model. Eight neurological measurements, described in more detail in Table 1, jointly determine g.
The model shows standardized parameter estimates for the eight formative indicators and four reflective indicators. Model fit is shown in Table 2.
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different conclusions regarding the models. Moreover,
there is always the possibility that unobserved third
factors are the source of covariation between neurolo-
gical indicators and intelligence (e.g., white matter,
cardiovascular factors, and cognitive ability; Marks
et al., 2007), although this problem is not unique for
SEM. More generally, although SEM has many statis-
tical benefits over traditional techniques, there are
issues that require careful attention, including model
equivalence (Lee & Hershberger, 1990), model selec-
tion (Myung & Pitt, 1997), and judging model fit
(Schermelleh-Engel et al., 2003). In addition, SEM
generally requires larger sample sizes than other
approaches, although required samples are not prohi-
bitive (e.g., Marsh & Hau, 1999). Nonetheless, SEM
offers various essential benefits over more traditional
methods. Most importantly, they allow for the flexible
comparison of various models in such a way that they
can be compared across studies. In this paper, we were
able to compare various competing hypotheses, reject
certain alternatives, and tentatively conclude that the
MIMIC perspective currently offers the best explana-
tion of the data analyzed here. Moreover, SEM is a
flexible tool: It could be extended by focusing on
different neural indicators (that may show higher factor
loadings or fit to stricter models), or by examining
hierarchical models of g (e.g., Carroll, 1993).

This finding is in line with recent work in other
fields, such as that of emotion research. Lindquist,
Wager, Kober, Bliss-Moreau, & Barrett (in press)
show that, for the relation between emotions and the
brain, a model similar to the MIMIC model is better
supported empirically than the essentialist view (where
the activity of one specialized subsystem is considered
the core feature of a particular emotion, as in model 1).
In addition, the statistical and conceptual properties of
the MIMIC model are most compatible with contem-
porary perspectives on the genetic influences on g (cf.
Penke, Denissen, & Miller, 2007). In terms of the
MIMIC model, genetic effects may therefore feature
as predictors alongside the neurological variables.

Our approach emphasizes the importance of con-
ceptual and statistical clarity for neuroscientific
research in intelligence. Neuroscientific findings
should, whenever possible, go beyond simple mea-
sures of association. Psychometric modeling techni-
ques, as discussed in this paper, allow us to see
beyond simple correlations. This enables the investiga-
tion of conceptual hypotheses on the relation between
intelligence and the brain that were hitherto the pro-
vince of mere speculation. By explicitly representing,
modeling, and testing competing hypotheses, we may
be able to finally get a grip on this complex problem.
We can only hope that, as was the case in the history of

general intelligence and the development of factor
analytic methods, competing methods and models
will lead the way to new conceptual and empirical
developments. We think that this will prove to be the
most interesting, insightful, and productive road to a
better understanding of the neurological basis of
intelligence.
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