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We examined the degree to which the conventional notion of g associated with IQ tests and
general cognitive ability tests (COG-g) relate to the general ability that underlies tests of read-
ing, math, and writing achievement (ACH-g). Two large, nationally representative data sets
and two independent individually-administered set of test batteries were analyzed using con-
firmatory factor analysis procedures: (a) the Kaufman-II sample (N=2520), organized into six
age groups between 4–5 and 16–19 years, tested on both the Kaufman Assessment Battery
for Children-2nd ed. (KABC-II) and the Kaufman Test of Educational Achievement-2nd ed.
(KTEA-II) Comprehensive Form; and (b) the WJ III sample (N=4969), organized into four
age groups between 5–6 and 14–19 years, tested on both the Cognitive and Achievement
batteries of the Woodcock–Johnson-3rd ed. (WJ III). Second-order latent factor models were
used to model the test scores. Multi-group confirmatory factor analysis was used to investigate
factor loading invariance across the age groups. In general, invariance was tenable, which
allowed for valid comparisons of second-order COG-g and ACH-g factor variance/covariances
and correlations across age. Although COG-g and ACH-g were not isomorphic, they correlated
substantially, with an overall mean correlation coefficient of .83, and with the correlations
generally increasing with age (ranging from .77 to .94). The nature of the relation between
COG-g and ACH-g was explored and the best measures of COG-g were examined.
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1. Introduction

One of the central purposes of intelligence testing, dating
back to Alfred Binet, is to predict educational achievement
(Binet & Simon, 1916). Research has shown a moderate to
strong relation between general cognitive ability (g) and
school grades, ranging from 0.40 to 0.70 (Mackintosh, 1998).
Jensen (1998) noted that the median validity coefficient of
IQ for educational variables is about .50, with the spread of
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the validity coefficients varying considerably depending on
the variability of the group (the coefficient being higher for
those nearer to the lower end of the educational ladder).

Even though the IQ-achievement correlations tend to be
moderate to high, typically there is about 50 to 75% of the
variance in academic achievement unaccounted for by mea-
sures of cognitive ability alone (Rohde & Thompson, 2007).
While some of the unaccounted for variance is measurement
error, there are certainly many factors besides g that system-
atically play a role in determining school grades, including
domain-specific aptitudes (e.g., Gustaffson & Balke, 1993),
other student characteristics (e.g., social-emotional function-
ing, behavior, motivation, grit, affect, metacognition, specific
cademic achievement g one and the same g? An exploration
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psychomotor skills), classroom practices, design and delivery
of curriculum and instruction, school demographics, climate,
politics and practices, home and community environments,
and, indirectly, state and school district organization and gov-
ernance (Wang, Haertel, &Walberg, 1993). Indeed, in his sem-
inal review of the link between cognitive ability and academic
achievement, Ceci (1991) showed that the relation between
IQ and academic achievement is substantially influenced by
the context of the learning environment. School learning is
clearly the result of the interaction of a complex set of proximal
and distal student and environmental characteristics.

The correlation between IQ and academic achievement is
typically higher when looking at standardized tests of achieve-
ment rather than grades in school (Mackintosh, 1998), because
school performance is more strongly tied to the curriculum,
student effort, teacher competency, and other “irrelevant” vari-
ables. Research has shown that IQ and achievement test scores
have yielded correlation coefficients that usually range from
themid-.60s tomid-.70s (Naglieri & Bornstein, 2003) and some-
times reach the mid-.80s (The Psychological Corporation, 2003,
Table 5.15), based on a variety of individually-administered IQ
and achievement tests.

Although such standardized achievement tests certainly
do not guarantee that all students will be on equal footing
in terms of their learning context, the tests do minimize
potentially confounding variables such as idiosyncratic
teacher grading styles and teacher perceptions. Another
benefit of using standardized achievement tests in assessing
the relation between intelligence and academic achievement
is that factor analysis can be applied to multiple tests, allow-
ing for an assessment of common variance across the tests
and minimizing error variance,1 which can contribute to a
less-than-accurate correlation with g (e.g., Watkins, Lei, &
Canivez, 2007). Lastly, individually administered tests elimi-
nate confounds related to group administered tests in that a
skilled examiner may minimize examinee related variance
related to motivation, comprehension of instructions, effort,
attention and so forth, especially for younger school-aged
children who are not used to standardized test situations
(Kaufman, 1979).

In a recent study, multiple measures of g were used to
predict group administered standardized national public
examination results across 25 academic subjects (Deary,
Strand, Smith, & Fernandes, 2007). The correlation between
a latent g factor measured at age 11 and a latent general ed-
ucational achievement factor measured at age 16 was 0.81.
A longitudinal coefficient as substantial as .81 is remarkably
high and suggests that the latent g and academic achieve-
ment constructs might approach identity when assessed con-
currently. Other studies have found that the average IQ of a
nation is highly correlated with the academic achievement
of that nation (Lynn & Meisenberg, 2010; Rindermann,
2007). Looking at differences in IQ across 86 countries, Lynn
and Meisenberg (2010) found a correlation of .92 between
a nation's measured IQ and the educational attainment of
school students in math, science and reading comprehension.
Correcting for attenuation, they found a correlation of 1.0. All
1 If latent variable structural equation model-based factor methods are
used, the relations between cognitive and achievement latent variables can
be estimated that are purified or purged of measurement error.
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of these results are consistent with Spearman (1904), who
suggested over 100 years ago that the general factor extracted
from a performance battery based on school grades would be
almost perfectly correlated with general intelligence.

A related issue is the extent to which the relation between
cognitive-g (COG-g) and academic achievement-g (ACH-g)
varies as a function of age. Studies that have assessed the
relation at various ages have reported a declining association
with age, which has been attributed to dropout effects,
increasing restriction of range, variability in educational
complexity, and the increasing role of dispositional factors
(e.g., motivation and persistence) (Jensen, 1998). None of
these studies, however: (a) estimated the correlations be-
tween a latent g factor from individually administered tests
of cognitive ability and a latent general factor extracted
from standardized achievement tests, and (b) tested for fac-
torial invariance across the different age groups. Gustaffson
and Balke (1993) investigated the relationship between a
latent cognitive ability factor and a latent school achievement
factor comprising course grades in 17 different subjects. They
found that COG-g explained a substantial amount (40%) of
the variance in ACH-g. Similarly, among a sample of German
students, Rindermann and Neubauer (2004) found a correla-
tion of .63 between COG-g and an ACH-g consisting of school
grades. In both of these studies, standardized tests of ACH-g
were not administered.

Among recent studies that have included standardized
measures of academic achievement (Deary et al., 2007;
Spinks et al., 2007), the measures of academic achievement
were group administered, and the correlations between a la-
tent general cognitive ability factor and latent educational
achievement scores were assessed within longitudinal de-
signs, not via cross-sectional methodology. Although these
studies provided important insights into the possible causal
relations linking COG-g to ACH-g, they did not directly mea-
sure the degree to which the two types of g are the same or
different, which is best examined when cognitive and
achievement tests are administered concurrently. Also, they
did not assess whether the COG-g and ACH-g correlation dif-
fers as a function of chronological age.2

To cast light on these issues, the current study aimed: (a)
to assess the relation between a latent g-factor extracted
from a battery of individually administered cognitive ability
tests (reflecting COG-g) and a latent academic achievement
factor extracted from a battery of academic achievement
tests (reflecting ACH-g) using large, nationally representative
samples; (b) to test the equivalence of second-order COG-g
and ACH-g latent factor correlations across a wide range of
age groups; (c) to cross-validate these findings with a second
large battery of cognitive and achievement tests, normed
on an independent, nationally representative sample; and
(d) to interpret all results, from the perspective of Cattell–
Horn–Carroll (CHC) theory (see Carroll, 1993; Horn & Noll,
1997; McGrew, 2005, 2009).

The CHC model represents a merger of the Horn–Cattell
Gf–Gc theory (Horn & Cattell, 1966; Horn & Noll, 1997) and
Carroll's (1993) three-tiered hierarchical organization of
2 It is possible to investigate developmental age effects if more complex
longitudinal test–retest designs are used that include developmental time-
lag components (see McArdle & Woodcock, 1997, for an example).
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human abilities. Historically, both theories placed a key
emphasis on an array of 8–10 cognitive Broad Abilities. The
merged, contemporary CHC theory identifies 10 such Broad
Abilities, for example, Crystallized Knowledge (Gc), Fluid
Reasoning (Gf), Short-term Retrieval (Gsm) and Processing
Speed (Gs). CHC theory is particularly pertinent as a theoret-
ical foundation for the present study because the 10 Broad
Abilities include eight that are readily identifiable as cogni-
tive and two that fit naturally into the academic achievement
domain: Grw (Reading & Writing) and Gq (Quantitative
Knowledge). Furthermore, CHC theory is the main theoretical
basis for nearly all current individually-administered tests
of cognitive ability (Kaufman, DeYoung Gray, Brown &
Mackintosh, 2009), including both sets of instruments used
to address the COG-g and ACH-g relation in the present study.

2. Method

2.1. Participants

Kaufman-II. The “Kaufman sample” included the conorming
population of the Kaufman Test of Educational Achievement-
Second Edition, Comprehensive Form (KTEA-II;Kaufman &
Kaufman, 2004b) and the Kaufman Assessment Battery for
Children-Second Edition (KABC-II; Kaufman & Kaufman,
2004a). This sample comprised a total of 2520 students includ-
ed in the KABC-II norm sample and also in either the age-
norm or the grade-norm sample of the KTEA-II. About half
the sample was tested on KTEA-II Form A (n=1227) and the
other half on KTEA-II Form B (n=1293). Both KTEA-II and
KABC-II norm samples were stratified to be close to population
percentages for gender, ethnicity, parental education, and
geographic region, according to US population data from the
Current Population Survey, March 2001. Analyses were con-
ducted on six age groups: 4–5 (n=295), 6 (n=198), 7–9
(n=565), 10–12 (n=577), 13–15 (n=511), and 16–19
(n=374). Each age sample matched Census figures with rea-
sonable accuracy. The total sample comprised 1257 (49.9%)
females and 1263 (50.1%) males; 1569 (62.2%) Caucasians,
375 (14.9%) African Americans, 445 (17.7%) Hispanics, and
131 (5.2%) “Others” (e.g., American Indians, Alaska Natives,
Asian Americans, and Pacific Islanders); 362 (14.4%) had par-
ents who completed less than 12 years of formal schooling,
818 (32.5%) had parents who graduated high school, 759
(30.1%) had parents who completed 1–3 years of college, and
581 (23.0%) had parents who graduated college; and 350
(13.9%) lived in the Northeast, 662 (26.3%) lived in the North
Central region, 875 (34.7%) lived in the South, and 633
(25.1%) lived in the West.

WJ III. The “WJ III sample” comprisedN=4969 individuals
tested on theWoodcock–Johnson III (WJ III; Woodcock, 2001).
The sample was drawn from the nationally representative
WJ III standardization sample (see McGrew & Woodcock,
2001). It was constructed using a three-stage stratified sam-
pling plan that controlled for 10 individual (e.g., race, gender,
educational level, occupational status) and community (e.g.,
community size, community SES) variables as per the United
States Census projection for the year 2000. Analyses were
conducted on four age groups: 5 to 6 (n=639), 7 to
8 (n=720), 9 to13 (n=1995), 14 to 19 (n=1615). Within
each age group, two randomly divided subsamples were
Please cite this article as: Kaufman, S.B., et al., Are cognitive g and a
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used so that the analysis would consist of models calibrated
in one sample and then cross-validated in another sample at
each respective age grouping.

2.2. Measures

Kaufman-II. The cognitive and achievement tests used
in the Kaufman sample were from the KABC-II and KTEA-II
test batteries. Descriptions of KTEA-II and KABC-II subtests
are presented in the test manuals (Kaufman & Kaufman,
2004a, Table 1.2, Kaufman & Kaufman, 2004b, Table 1.1) and
are available in a number of assessment texts (Kaufman,
Lichtenberger, Fletcher-Janzen, & Kaufman, 2005; Lichtenberger
& Breaux, 2010). Estimates of reliability and evidence of valid-
ity for all KTEA-II and KABC-II scores are reported by Kaufman
and Kaufman (2004a, 2004b), Kaufman et al. (2005), and
Lichtenberger and Breaux (2010); the pros and cons of the
instruments, as evaluated by independent reviewers, are
also summarized by Kaufman et al. (2005), Lichtenberger
and Breaux (2010), and Reynolds, Keith, Fine, Fisher, and
Low (2007).

The KTEA-II is an individually administered measure of
academic achievement for individuals ages 4.5 through
25 years. It includes 14 subtests, nine of which measure (a)
mathematics (Math Computation, Math Concepts & Applica-
tions), (b) reading (Letter & Word Recognition, Reading
Comprehension, Nonsense Word Decoding), (c) reading
fluency (Word Recognition Fluency, Decoding Fluency),
and (d) written language (Written Expression, Spelling). In
terms of the CHC taxonomy (McGrew, 2005, 2009), the read-
ing, writing, and spelling tests are associated with Grw, and
the math tests with the Gq factor. The other five KTEA-II
subtests did not fit into reading-writing (Grw) or math
(Gq) domains and were best classified as measuring Gc
(Listening Comprehension, Oral Expression; Associational
Fluency) and Glr (Naming Facility/RAN; Flanagan, Ortiz, &
Alfonso, 2007; Flanagan, Ortiz, & Alfonso, in press; Kaufman
et al., 2005). These KTEA-II subtests were, therefore, included
in this study as measures of COG-g, although not all of these
subtests were administered to all age groups.

The KABC-II is a popular individually administered mea-
sure of intelligence. The scoring structure of the KABC-II
includes five CHC broad ability composites: Gc, Glr, Gf, Gsm,
and Visual Processing (Gv). A total of 18 KABC-II subtests
were included in this study, although not all of the tests
were available for each age group. The KABC-II and KTEA-II
subtests were organized into CHC broad ability factors,
which, in turn were regressed onto cognitive and achieve-
ment second-order g factors (see Table 1).

WJ III. The cognitive and achievement measures used in
the WJ III sample were from the WJ III Cognitive, Achieve-
ment, and Diagnostic Supplement test batteries test batteries
(Woodcock, McGrew, Mather, & Schrank, 2003). A total of
40 tests were used. The development, standardization, and
psychometric properties of the WJ-III battery have generally
been evaluated favorably by independent reviewers (Bradley-
Johnson, Morgan, & Nutkins, 2004; Cizek, 2003; Sandoval,
2003; Sares, 2005; Thompson, 2005). CHC theory (McGrew,
2005, 2009) was used to organize the tests by CHC broad
ability factors. These classifications are shown in Table 2. The
variables used were the same across all age groups except in
cademic achievement g one and the same g? An exploration
), doi:10.1016/j.intell.2012.01.009
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Table 1
Kaufman organization of subtests into broad abilities.

COG-g ACH-g

Gc Gv Gf Glr Gsm Grw Gq

Verbal knowledge Triangles Story completion Atlantis Word order Letter–word recognition Math concepts and applications
Expressive vocabulary Block counting Pattern reasoning Atlantis-delayed Number recall Written expression Math calculation
Riddles Rover Hand movements Rebus Hand movements Nonsense word decoding
Oral expression Pattern reasoning Conceptual thinking Rebus-delayed Spelling
Listening comprehension Gestalt closure Naming facility Reading comprehension
Written expression Face recognition Decoding fluency
Reading comprehension Conceptual thinking Nonsense word decoding fluency
Gestalt closure
Associational fluency

Notes. Italics indicated subtest was cross-loaded.

Table 2
WJ-III organization of tests into broad abilities.

COG-g ACH-g

Gc Gv Gf Glr Gsm Ga Gs Grw Gq

Verbal comp Spatial relations Analysis-synthesis Memory for names Memory for words Auditory attention Decision speed Spelling Math applied problems
General info Block rotation Concept formation Memory for names delayed Memory for sentences Sound patterns Visual-matching Writing sample Math calculation
Oral comp Visual closure Numerical reasoning Picture recognition Auditory working memory Incomplete words Cross-out Letter–word identify Math fluency
Story recall Cross-out Visual–auditory memory Numbers reversed Sound blending Rapid naming Passage comp Numerical reasoning
Memory for sentences Planning Visual–auditory memory delayed Writing fluency Word attack
Rapid naming Math fluency Math fluency
Retrieval fluency Reading fluency

Editing
writing fluency

Notes. Italics indicated test was cross-loaded.
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the youngest sample (ages 5–6) where the Writing and Read-
ing fluency tests and Editing were not applicable.

2.3. Analytic strategy

Preliminary models. Second-order CFA models were de-
veloped for each age group and each test battery. Initial
models were based on information from the test manuals,
CHC theory, and prior research. The goal was to develop
models that were acceptable from theoretical and statistical
standpoints. Once acceptable models were estimated in
each age group, multi-group confirmatory factor models
were estimated. General specifications for the Kaufman-II
and WJ III models are presented next with more detailed
information presented in the Results section.

Kaufman-II. To estimate the correlation between KABC-II
COG-g and KTEA-II ACH-g across ages, a model with correlat-
ed second-order COG-g and ACH-g factors was proposed in
each age group; this model was based on theoretical, empir-
ical, and clinical considerations (Kaufman et al., 2005;
Lichtenberger & Breaux, 2010; Reynolds et al., 2007). Because
not all subtests were administered at all ages, the number of
factor indicators varied by age. Factor to indicators specifica-
tions are shown in Table 1.

The same 18 cognitive and 10 achievement subtests were
administered to participants across the 10–12, 13–15, and
16–19 age groups. The initial model for these age groups
included seven first-order CHC common factors (Gf, Gc, Glr,
Gsm, Gv, Grw, Gq), with these first-order factors regressed
on two correlated second-order latent factors. Grw and
Gq factors were regressed on a second-order ACH-g factor
and Gf, Gc, Glr, Gsm, and Gv factors were regressed on a
second-order COG-g factor.

Participants in the 7–9 age group were administered the
same 18 cognitive subtests as the older age groups; however,
they were given two fewer KTEA-II achievement subtests
(See Fig. 1). These fewer subtests, however, did not influence
the number of factors (See Figs. 1 and 2).

Although there were few differences in factor indicators
in the 7–9, 10–12, 13–15, 16–19 age groups, there were sev-
eral differences in the youngest two age groups. In the 6 year-
old age group, Word Recognition Fluency, Decoding Fluency,
Spelling, Nonsense Word Decoding, and Reading Compre-
hension—all indicators of the Grw factor—are not age appro-
priate and were not administered. Grw was thus indicated by
two subtests at age 6 (viz., Letter & Word Recognition and
Written Expression). In addition to these KTEA-II subtests,
Atlantis Delayed and Rebus Delayed were not administered.
Two subtests not administered to the older age groups, Con-
ceptual Thinking and Gestalt Closure, were administered to
children at age 6 (and also ages 4–5). Conceptual Thinking
was specified to load on both Gf and Gv factors for 6-year-
olds and Gestalt Closure was specified to load on both Gv
and Gc.

Last, the age 4–5 model included several departures from
the models in the other age groups. First, there was not a Gf
factor. Gv and Gf were not differentiated for this age group
in the KABC-II (see Kaufman & Kaufman, 2004a). Gv was in-
dicated by Gestalt Closure (cross-loaded on Gc), Conceptual
Thinking, Face Recognition, and Triangles. Three KTEA-II
achievement subtests were administered at these ages:
Please cite this article as: Kaufman, S.B., et al., Are cognitive g and a
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Math Concepts & Applications, Written Expression, and
Letter & Word Recognition. Gq was indicated by the single
subtest, Math Concepts & Applications. To identify this factor
the residual variance was fixed to 12.97 (Keith, 2006), which
was calculated by subtracting the internal reliability estimate
(.93) from 1.0, and then multiplying this value (.07) by the
variance (185.29).

There were some additional modifications to the specifi-
cations outlined above. In addition to second-order factor
correlations, some first-order factor unique variances be-
tween the cognitive and achievement factors were correlat-
ed. These correlations were freed because previous research
has supported the influence of broad ability CHC factors on
achievement above and beyond the influence of g (e.g.,
Benson, 2008; Keith, 1999). In addition, some KABC-II sub-
tests were found to cross-load on two factors in previous
research (Reynolds et al., 2007). We allowed these subtests
(Hand Movements on Gf and Gsm; Pattern Reasoning on Gf
and Gv; Gestalt Closure, when administered, on Gc and Gv)
to cross-load on two cognitive factors across the age groups.
Both Written Expression and Reading Comprehension cross-
loaded on Gc. Delayed subtest residuals correlated freely
with their respective tests from the initial measurement
(e.g., Atlantis with Atlantis Delayed). Lastly, three additional
measurement residual correlations were estimated freely
because they represented common content or method:
Word Recognition Fluency and Decoding Fluency; Decoding
Fluency and Nonsense Word Decoding; and Associational
Fluency and Naming Facility. Additional age-group specific
adjustments are discussed in the Results section (model cali-
bration sample, See Fig. 2).

WJ III. Initial models were developed using Subsample 1
(model calibration sample). The same model specifications
were utilized when using Subsample 2 (model cross-
validation sample) data for analysis. The general COG-g model
was specified to include seven first-order CHC latent factors
(Gf, Gc, Glr, Ga, Gv, Gsm, Gs) which were, in turn, regressed
on a second-order COG-g factor. The general ACH-g model
used across ages specified two broad first-order latent achieve-
ment factors (Gq, Grw), with those factors regressed on a
second-order ACH-g factor. The COG-g and ACH-g second-
order factors were correlated. Some correlated residuals and
cross-loadings were also included across all age groups.
Delayed recall test residuals were correlated with each other
andwith their corresponding residual from the initialmeasure-
ment. In addition, the three achievement fluency test residuals
were correlated when they were administered. Five cognitive
tests had cross-loadings, which were allowed across ages.
Retrieval Fluency loaded on Gc and Gs, Numerical Reasoning
on Gf and Gq, Memory for Sentences on Gc and Gsm, Rapid
Naming on Gc and Gs, and Cross Out on Gv and Gs. In addition,
Writing (Grw) and Math (Gq) Fluency tests were cross-loaded
on the Gs factor. The organization of tests by broad abilities is
shown in Table 2.

There were some age-group specific correlations between
the cognitive and achievement first-order unique variances.
Moreover, there were some age-group specific measurement
residual correlations, as explained in the Results section.

Multi-group models. The primary purpose of this research
was to test the equivalence of g factor covariances (correla-
tions) and variances across age levels. Valid comparisons of
cademic achievement g one and the same g? An exploration
), doi:10.1016/j.intell.2012.01.009
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Fig. 1. Kaufman COG-g/ACH-g second-order model for children aged 7–9. Note. Second-order factor model for the Kaufman-II data, with two correlated second-
order g factors. The correlation between the Glr–Grw uniqueness was not included in the figure.
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Fig. 2. Woodcock Johnson-III COG-g/ACH-g second-order model for children aged 9–13. Note. Second-order factor model for the Woodcock Johnson-III data, with
two correlated second-order g factors. Correlations between the Grw–Gc, Gf–Gq, Gs–Gq, and Gs–Grw uniqueness were not included in the figure.
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factor variances and covariances required that factors had
the same meaning across age. This assumption was tested
empirically via tests of factorial invariance. Higher-order
models were used in this research; thus, age-invariance of
both first- and second-order factor loadings was evaluated
in a set of nested, multi-group models across age groups. In-
variant first- and second-order loadings allowed for valid
quantitative comparisons of factor variances and covariances
across the age groups (Gregorich, 2006).

Substantive questions were addressed using multi-group
analysis in which like factor variances and covariances (corre-
lations), in addition to invariant first- and second-order factor
loadings, were constrained across age groups. Before factor
covariances were compared, the factor variances were tested
for equivalence across age. If equality of factor variances was
tenable, these equality constraints were maintained and the
equivalence of COG-g/ACH-g factor covariances (correlations
if factor variances were equal) across age was tested.

One issue that arose while testing for factorial invariance
was that some subtests were not administered at all ages.
Consequently some factor indicators varied across age
groups. If a subtest indicator of a common factor was missing
in one age group, it was specified as a latent variable with
zero variance (i.e., missing data). This specification, along
with common indicators within each factor available across
ages, allowed for us to proceed with invariance tests in the
multi-group models despite some differences in factor indi-
cators across age (see Keith, Low, Reynolds, Patel, & Ridley,
2010; Keith & Reynolds, 2012; McArdle, 1994; Reynolds et
al., 2007).

2.4. Model fit

Values for model chi squared (χ2), root-mean square
error of approximation (RMSEA; Steiger & Lind, 1980), and
comparative fit index (CFI; Bentler, 1990) were reported
and used for evaluation of individual models. The standard-
ized root mean square residual (SRMR; Hu & Bentler, 1999)
was reported when available.

There is no definitive method for evaluating the fit for
tests of factorial invariance. To compare the fit of hypothe-
sized models while testing for invariance, we used the likeli-
hood ratio test (Bentler & Bonett, 1980) and ΔCFI. In a
simulation study, Cheung and Rensvold (2002) found that
ΔCFI>.01 was considered meaningful change, and that the
index was not overly sensitive to small errors of approxima-
tion when applied to first-order factor models. Some may
consider ΔCFI as a more liberal criterion. Alternatively, the
likelihood ratio test is often considered to be overpowered
at detecting unimportant and tiny differences in fit when
there are a large number of constraints and large sample
size. The more liberal criterion was given more weight for
measurement invariance models due to the complexity of
the model, number of constraints, and large sample size.
The likelihood ratio test was used when a test of one or
very few specific parameters related to structural level sub-
stantive hypotheses was required. In addition, RMSEA values
and SRMR (when available) were reported for all models.
Steiger's (1998) multi-group correction (RMSEA×√# of
groups) was applied to RMSEA values. Some general guide-
lines for changes in these index values for demonstrating
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factor loading invariance have been provided in previous re-
search: ΔCFIb .01; ΔRMSEAb .015; ΔSRMRb .03 (Chen, 2007).

3. Results

3.1. Descriptive statistics

Age-standardized scores were used for the analysis of
Kaufman-II data. Because the scores were from the norming
sample, the means and standard deviations for all of the
age-groups are close to the designated sample mean and
standard deviation of 10 and 3, respectively for the KABC-II
subtests, and 100 and 15 for KTEA-II subtests. There were
very small amounts of incomplete data (5% or less) for a
very few number of variables within each age group. Little's
MCAR tests were performed in each age, none of which was
statistically significant at the pb .01 level. Regardless, all of
the available data were analyzed using maximum likelihood
estimation procedures, which required the less strict as-
sumption of missing at random.

In the WJ III sample data, we used covariance matrices
that were developed in prior research. The covariance matri-
ces were split into calibration and validation samples (here
referred to as Subsamples 1 and 2) in prior research. Descrip-
tive statistics for tests for all ages in the standardization
sample are presented in McGrew and Woodcock (2001).
Again, because standardization sample data were used, all
test mean and standard deviations were close to the desig-
nated mean of 100 and standard deviation of 15. Detailed de-
scriptive statistics for all tests in the same age-differentiated
calibration and cross-validation samples have been described
previously (Floyd, Keith, Taub, & McGrew, 2007; Taub, Floyd,
Keith, & McGrew, 2008).

3.2. Kaufman-II analysis

KTEA-II data included scores from parallel Forms A and B.
An analysis was conducted to determine whether it was
feasible to collapse the Forms into a single data set. A four-
factor Grw, Gq, Oral Language, and Oral Fluency model was
specified for each Form. A test of strict factorial invariance
was performed. The Configural Invariance model fit was
acceptable, χ2 (110)=1084.77, CFI=.943. Next, a strict fac-
torial invariance model was imposed, χ2 (145)=1213.65,
CFI=.938, with Δχ2 (35)=128.88, pb .001. The ΔCFI (.005)
was negligible. Given the sensitivity of the likelihood ratio
test to sample size, it was deemed appropriate to collapse
KTEA-II Forms A and B for the purpose of this research.

Once Form A and Form B KTEA-II data were merged, ac-
ceptable second-order models were developed in each age
group. In the COG-g model, the Gf factor unique variance
was not statistically significantly different from zero in any
age group; this variance was constrained to zero in each age
group. This finding of a perfect correlation between Gf and
g is not uncommon (Gustaffson, 1984; Reynolds & Keith,
2007).

The fit of the models for ages 10–12, 13–15, and 16–19
were acceptable (Table 3). Some first-order cognitive and
achievement factor unique variances were correlated freely
in each of these three age groups: Gc with Gq (r=.50,
.48, .42, respectively) and Gv with Gq (r=.64, .77, .41,
cademic achievement g one and the same g? An exploration
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Table 3
Age group specific fit of the Kaufman-II models.

Age-group model χ2(df) CFI RMSEA

4–5 year-olds 201.78(127) .963 .045
6 year-olds 344.94(216) .945 .055
7–9 year-olds 560.32(283) .966 .042
10–12 year-olds 794.37(329) .955 .050
13–15 year-olds 807.55(329) .953 .053
16–19 year-olds 679.80(329) .947 .053
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respectively). In addition, Glr was correlated with Grw in the
10–12 (r=.21) and 13–15 (r=.25) age groups, and Gc with
Grw in the 13–15 (r=.50) and 16–19 (r=.48) age groups.
Lastly, Gsm correlated with Gq in the 10–12 (r=.22) age
group, and with Grw in the 16–19 (r=.25) age group.
These correlations represent the relations between specific
cognitive and achievement areas.

A model was also estimated in each of the three remain-
ing age groups, and each had acceptable fit (Table 3). Glr
and Grw unique variances were correlated freely in the
models for the 7–9 (r=.45) and 6 (r=.66) age groups.
3.3. Multi-group COG-g/ACH-g models

Loading invariance. The Configural model fit well (Table 4).
According to the likelihood ratio test, model fit degradedwhen
the first-order loadingswere constrained equal.ΔCFI, however,
was negligible3 and the RMSEA did not change. Model fit did
not degrade when constraints were added to corresponding
second-order factor loadings (Table 4). The constraints added
in this Second-Order Factor loading model were maintained
in subsequent models.

Factor variance/covariance equivalence. The next set of
tests focused on substantive questions. Model fit compari-
sons are shown in Table 4. The dispersion of corresponding
g factors was the same across age groups as indicated by
the lack of degradation in model fit when they were fixed
to be equal. These constraints were maintained and we tested
for factor correlation equivalence across age.

The application of equality constraints on the COG-g/ACH-g
correlations resulted in degradation in model fit. The primary
source of misfit was due to the correlation between the
COG-g and ACH-g factors in the 9–10 age group. When this
constraint was released, there was a statistically significant
improvement inmodel fit,Δχ2 (1)=19.26, pb .001. The factors
were less differentiated in this age group (r=.94). This model,
however, still demonstrated a statistically significant degrada-
tion compared to the ACH-g variance model (Table 4). We
released the equality constraint from the correlation between
COG-g and ACH-g factors for the age 4–5 group, which resulted
in a statistically significant improvement in model fit, Δχ2

(1)=7.41, p=.007. The factors were more differentiated in
this group (r=.77). Moreover, the model fit did not differ sta-
tistically significantly from the fit of the ACH-gmodel (Table 4).
3 We followed up and tried to locate local sources of non-invariance. Free-
ing these constraints or even deleting the subtests (e.g., Reading compre-
hension) from the model did not affect the factor correlations or
substantive conclusions.
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The correlation between factors, constrained equal across the
remaining four age groups, was .86.

3.4. WJ III analysis

Although the general models were described previously,
there were some slight sample specific correlated measure-
ment residuals across the age groups. Because the investiga-
tion of all potential specific factors that may arise in each
sample was not a purpose of this research, and because
we wanted to maintain g factors of the same order, a few
measurement residual correlations were allowed in each
age group. These correlations were generally trivial, and
they did not interfere with an assumption of configural in-
variance for the multi-group models so to conserve space
all of these are not reported.

First, an acceptable model was specified for the 14–19 age
group. Model fit was reasonably acceptable, though the CFI
was less than desired (See Table 5). Correlated factor unique
variances included Gf with Gq (r=.60) and Gc with Gq
(r=.29). The 9–13 age group model fit well. Four first-
order unique variances were correlated: Gc with Grw
(r=.62), Gf with Gq (r=.35), and Gs with Gq (r=.34) and
Grw (r=.38). Model fit for the 7–8 year-old age group
model was acceptable. Three first-order factor unique vari-
ances were correlated, including Gs with Gq (r=.43) and
Grw (r=.47), and Gc with Grw (r=.34). Lastly, an accept-
able model for the 5–6 age group was developed. The first-
order Gf unique variance correlated with the first-order Gq
unique variance (r=.72).

3.5. Multi-group COG-g/ACH-g models

Loading invariance. In Subsample 1 the models with first-
and second-order factor loadings fixed to equality demon-
strated degradation in fit using the likelihood ratio test, but
the ΔCFI, ΔRMSEA, and ΔSRMR were not considered substan-
tial or important (Table 6). Using the models specified in
Subsample 1, the same procedure was applied to Subsample
2. Although the model fit indexes suggested slightly worse
fit in Subsample 2, the fit was adequate (Table 6).

3.6. Factor variance/covariance equivalence

Subsample 1. No statistically significant degradation in fit
was observed when the COG-g variances were fixed to be
equal across age (Table 6). There was a statistically signifi-
cant degradation, however, in fit for the ACH-g model. The
variance for the 7–8 group was statistically significantly dif-
ferent, with ACH-g being more heterogeneous in this age
group. The three remaining ACH-g variances did not differ
significantly from each other.

Lastly, factor correlation equivalence was tested across
age groups. The variance of the ACH-g factor for the 7–8 age
group remained unconstrained across the ages, while the
remaining corresponding COG-g and ACH-g variances were
constrained equal. The correlations between all the groups,
excluding the 7–8 year-old group, were fixed to be equal.
There was a statistically significant degradation in model fit.
The degradation was due to the correlation in the 14–19
age group. Model fit improved when this equality constraint
cademic achievement g one and the same g? An exploration
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Table 4
Tests of invariance for the Kaufman-II models.

Model χ2(df) Δχ2(Δdf) p CFI RMSEAa a

1. Configural 3388.90(1613) .955 .051
2. First-order loadings 3694.09(1715) 305.20(102) b.001 .950 .051
3. Second-order loadings 3739.86(1739) 45.77(24) = .005 .949 .051
4. COG-g factor variance 3743.53(1744) 3.67(5) = .598 .949 .051
5. ACH-g factor variance 3748.03(1749) 4.50(5) = .480 .950 .051
6. COG-g/ACH-g correlation 3779.57(1754) 31.54(5) b.001 .949 .051
7. COG-g/ACH-g correlation 3760.31(1753) 12.28(4) = .015 .949 .051
8. COG-g/ACH-g correlation 3752.91(1752) 4.87(3) = .181 .949 .051

Note. aRMSEA corrected for multi-groups (Steiger, 1998). Compare models 1–6 with the previous model. Compare models 7 and 8 with model 5.

Table 5
Age group specific models for the WJ III.

Age-group model χ2(df) CFI RMSEA SRMR

5–6 year-olds 763.05(602) .959 .028 .046
7–8 year-olds 1050.51(706) .945 .035 .043
9–13 year-olds 1251.34(706) .954 .031 .037
14–19 year-olds 1318.77(707) .940 .037 .043
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was removed, Δχ2 (1)=10.8, p=.001. The correlations be-
tween COG-g/ACH-g were the same in the 5–6 and 9–13 age
groups (r=.80), and these factors were more differentiated
than were the COG-g/ACH-g factor correlation in the oldest
age group (r=.87). The correlation between these two fac-
tors in the 7–8 age group was .78.

Subsample 2. COG-g and ACH-g variances were not statis-
tically significantly different from each other. The COG-g and
ACH-g factor correlations were constrained equal across age
groups, but there was statistically significant degradation in
fit. The correlation between these two factors in the 14–19
age group was larger than the correlation in the other age
groups, Δχ2 (1)=20.2, pb .001. Once again, COG-g and ACH-
g correlations were more differentiated in the younger age
Table 6
Tests of invariance for the WJ III models in subsamples 1 and 2.

Model χ2(df) Δ

Subsample 1
1. Configural 4384.1(2721)
2. First-order loadings 4801.0(2828) 41
3. Second-order loadings 4873.1(2849) 7
4. COG-g factor variance 4879.1(2852)
5. ACH-g factor variance 4893.7(2855) 2
6. ACH-g factor variance, without 7–8 groupsb 4879.5(2854)
7. COG-g/ACH-g correlation, with 14–19 freec 4880.1(2855)
8. COG-g/ACH-g correlationc 4890.9(2856) 1

Subsample 2
1. Configural model 4695.2(2721)
2. First-order loadings 5061.2(2828) 36
3. Second-order loadings 5124.2(2849) 6
4. COG-g factor variance 5128.5(2852)
5. ACH-g factor variance 5133.8(2855)
6. COG-g/ACH-g correlation 5155.2(2858) 2
7. COG-g/ACH-g correlation, 14–19 freed 5135.0(2857)

a RMSEA corrected for multi-groups (Steiger, 1998). Compare models 1–5 with t
b Compare with Model 4.
c Compare with model 6 in Subsample 1.
d Compare with model 5 in Subsample 2.
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groups (r=.77) than they were in the 14–19 age group
(r=.88). In both samples the oldest age group contained
the least differentiated COG-g and ACH-g factors and the
magnitude of the correlations were similar across samples.

3.7. Overview of COG-g/ACH-g correlations

Table 7 summarizes the coefficients of correlation be-
tween COG-g and ACH-g, by age group, for the Kaufman-II
and the two WJ III subsamples. The values range from .77 to
.94 across ages; mean coefficient is .86 for the Kaufman-II
and .80 for the WJ III, with an overall mean correlation coef-
ficient of .83 and median of .80. Based on the median age for
the various age groups on the two sets of test batteries, 10 co-
efficients are shown for ages 4½–11 in Table 7 and four coef-
ficients are shown for ages 14–17½. Notably, seven of the 10
values for ages 4½–11 are .80 or lower whereas all values for
the adolescent samples were greater than .85. Thus, there is a
small trend for the COG-g/ACH-g coefficients to be larger for
high school students than for preschool and elementary
school children.

Lastly, a few additional tests were performed to determine
whether the correlations between COG-g and ACH-gwere sta-
tistically significantly different from one. The second-order
χ2(Δdf) p CFI RMSEAa SRMR

.948 .034 .046
6.9(107) b.001 .939 .036 .069
2.7(21) b.001 .937 .036 .073
6.0(3) = .112 .937 .036 .075
0.6(3) b.001 .937 .036 .076
0.6(2) = .74 .937 .036 .075
0.6(1) = .439 .937 .036 .075
1.4(2) = .003 .937 .036 .076

.936 .036 .046
6.0(107) b.001 .928 .038 .066
3.0(21) b.001 .926 .038 .071
4.3(3) = .233 .926 .038 .071
5.3(3) = .150 .926 .038 .072
1.3(3) b.001 .926 .038 .072
1.2(2) = .552 .926 .038 .072

he previous model.

cademic achievement g one and the same g? An exploration
), doi:10.1016/j.intell.2012.01.009

http://dx.doi.org/10.1016/j.intell.2012.01.009


Table 9
Subtest analysis: the six best measures of COG-g on the Kaufman-II and
WJ III.

Subtest Broad Mean COG-g

Ability Loading (and range)

Kaufman-II
Riddles Gc .72 (range=.69–.77)
Verbal knowledge Gc .71 (range=.67–.75)
Pattern reasoning Gf .70 (range=.67–.75)
Expressive vocabulary Gc .69 (range=.64–.73)
Story completion Gf .63 (range=.60–.72)
Rebus Glr .61 (range=.51–.72)

WJ III
General information Gc .67 (range=.64–.70)
Concept formation Gf .66 (range=.64–.69)
Verbal comprehension Gc .66 (range=.64–.68)
Visual–auditory learning Glr .61 (range=.59–.62)
Oral comprehension Gc .58 (range=.57–.61)
Numbers reversed Gsm .58 (range=.56–.60)

Note: Mean loadings are based on six age groups between 4–5 and
16–19 years on the Kaufman-II and for four age groups between ages 5–6
through 14–19 years on the WJ III. Values shown for WJ III represent the
mean value for Subsample 1 and Subsample 2. For the Kaufman-II, Word
Order (Gsm) and Conceptual Thinking (Gv/Gf) were among the highest-
loading subtests for ages 4–5 years.

Table 7
Correlations between COG-g and ACH-g on the Kaufman-II andWJ III, By Age.

Age group

(Median age) Kaufman-II WJ III # 1 WJ III # 2

4½ .77 – –

5½–6 .86 .80 .77
7½–8 .94 .78 .77
11 .86 .80 .77
14 .86 – –

16½ – .87 .88
17½ .86 – –

Note: Age ranges for the Kaufman-II are 4–5, 6, 7–9, 10–12, 13–15, and
16–19; age ranges for the two WJ III subsamples are 5–6, 7–8, 9–13, and
14–19. The coefficient of .78 for WJ III Subsample 1 was not compared across
samples because of the variance difference.
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factor variances were fixed to one, and then the covariance
was fixed to one. All of the tests indicated that indeed there
was not a perfect correlation between these two second-
order factors in any of the age groups. They were strongly
correlated, yet distinct factors.

3.8. Summary of g loadings for broad abilities and subtests

In Table 8, loadings on COG-g are presented, by age, for
the Kaufman-II and WJ III Broad Abilities, and in Table 9 com-
parable data are presented for individual subtests (for the WJ
III, g loadings were averaged for Subsamples 1 and 2).

3.9. Broad abilities

Gf demonstrated the strongest relation to COG-g, averag-
ing 1.0 for the Kaufman-II (a direct function of the Gf error
variance being set to zero in the models) and .95 for the
WJ III. Average g loadings were in the .80s for Gc, Gv, and
Glr for both test batteries, suggesting good consistency across
data sets (Table 8). The one area of disparity concerns Gsm,
which had by far the weakest average g loading (.71) on the
Kaufman-II, but ranked second to Gf with a mean of .92 on
the WJ III. Auditory Processing (Ga; mean g loading=.82)
and Gs (.62) round out the WJ III picture (Gs is not measured
by the Kaufman-II and Ga—only measured at age 6 on the
KTEA-II—was excluded from the Kaufman-II analyses.).
Thus, Gf had the strongest relation with COG-g for both data
Table 8
COG-g loadings of broad abilities on the Kaufman-II and WJ III, by age.

Age group
(Median age)

Gf Gc Gv

K WJ K WJ K

4½ – – .88 – .99
5½–6 1.0 .97 .83 .85 .88
7½–8 1.0 .97 .88 .85 .89
11 1.0 .88 .88 .86 .82
14 1.0 – .86 – .88
16½ – .96 – .90 –

17½ 1.0 – .83 – .82
Mean 1.0 .95 .86 .86 .88

Note: K = Kaufman; WJ =WJ III. Age ranges for the Kaufman-II are 4–5, 6, 7–9, 10–
9–13, and 14–19. Values shown for WJ III represent the mean value for Subsample
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sets; Gsm had the weakest relation for the Kaufman-II and
Gs had the weakest relation for the WJ III. These results are
consistent with current confirmatory factor analysis research
with the WAIS-IV (Lichtenberger & Kaufman, 2009), WISC-IV
(Keith, Fine, Taub, Reynolds, & Kranzler, 2006), KABC-II
(Reynolds et al., 2007), DAS-II (Keith et al., 2010), WJ-R
(Bickley, Keith, & Wolfle, 1995; McGrew, Werder, &
Woodcock, 1991), and WJ-III (Woodcock, 2001). All have
shown that Gf has the highest loading on COG-g. In addition,
Gf, Gc, and Glr almost always have higher loadings on g than
either Gsm or Gs.

3.10. Subtests

Although Gf was the strongest measure of g for both test
batteries, the Gc variables emerged as the best measures of
g among the subtests. Table 9 presents average g loadings,
across the age range, for the six best measures of g on both
the Kaufman-II and WJ III. Three of the six subtests for
each test battery primarily measure Gc, including the best
Glr Gsm Ga Gs

WJ K WJ K WJ WJ WJ

– .97 – .84 – – –

.75 .82 .85 .79 1.0 .84 .75

.93 .84 .84 .65 .90 .81 .56

.77 .78 .83 .64 .93 .82 .55
– .85 – .66 – – –

.74 – .78 – .84 .79 .60
– .85 – .68 – – –

.80 .85 .83 .71 .92 .82 .62

12, 13–15, and 16–19; age ranges for the two WJ III subsamples are 5–6, 7–8,
1 and Subsample 2, by age group.
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measures of g on the Kaufman-II (Riddles, Verbal Knowledge)
and WJ III (General Information). Gf is represented among
the top six by two Kaufman-II subtests and oneWJ III subtest,
and Glr is represented for each test battery. The six best
measures of g on the WJ III were remarkably consistent
from age group to age group. That age-to-age consistency
was demonstrated by most Kaufman-II subtests, with one
notable exception: Word Order (Gsm) was among the best
measures of g for ages 4–5 (.72) and 6 (.72), but not for the
older four age groups (.49–.54). Like the results for the
Broad Abilities, these subtest results—namely, the highest g
loadings by Gc subtests—were entirely consistent with the
Wechsler literature and with empirical analyses of the
KABC-II and WJ III.

4. Discussion

The central purpose of this study was to assess the rela-
tion between a second-order latent g-factor from a battery
of individually administered cognitive ability tests (COG-g)
and a second-order latent g-factor from a battery of individu-
ally administered academic achievement tests (ACH-g).
Multi-group confirmatory factor analysis was used to demon-
strate invariance of the first- and second-order factor load-
ings across age groups, allowing for valid comparison of
factor variance/covariances and correlations across age. Re-
markable consistency was found across two large, nationally
representative samples and two independent sets of batte-
ries. Like Deary et al.'s (2007) value of .81, the overall mean
correlation coefficient between COG-g and ACH-g was .83
(Mdn=.80), generally ranging from .77 to .88 (depending
on age and sample, with a .94 correlation as an outlier), span-
ning the entire school age range (4–19).

Therefore, Binet and Simon (1916) succeeded in their goal
of predicting broad academic achievement from tests of gen-
eral cognitive ability. Even present day tests of general cogni-
tive ability show extremely high correlations with general
academic achievement. In the title of this paper, however,
we posed the question: Is COG-g and ACH-g one and the
same g? The answer to this question is no. They are highly re-
lated, yet distinct constructs. And although first-order unique
correlations were not discussed in detail, their presence also
suggests that beyond the general factor, more specific cogni-
tive factors are important for explaining specific aspects of
achievement.

In terms of developmental trends, for both WJ III subsam-
ples, g-factors in the oldest age ranges were less differentiat-
ed than the youngest age groups. In the Kaufman-II samples
the strongest correlation was .94 for 7–9 year olds and the
weakest was .77 for ages 4–5, but the correlations were
equivalent (r=.87) for age 6 and the age groups between
10 and 19 years. As mentioned previously, Table 7 shows a
very small, and certainly not conclusive, trend for the coeffi-
cients to increase with age, with the values for adolescents
tending to be higher than the values for children.

These results counter the findings of prior studies, which
have demonstrated declining correlations between intelli-
gence and academic achievement with school age (Jensen,
1998). One explanation for this decline has been that restric-
tion of range occurs because students drop out of school as
education becomes more advanced (Pind, Gunnarsdottir, &
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Johannesson, 2003). Indeed, after controlling for restriction
of range, Laidra, Pullmann, and Allik (2007) found that aca-
demic achievement (as assessed by GPA) relies on general cog-
nitive ability (as assessed by the Raven's Standard Progressive
Matrices) through the school years. Before controlling for re-
striction of range, however, they found a decreasing relation
between GPA and IQ. In the current study, since age invariance
was demonstrated, we were able to make valid comparisons
factor variance/covariances across the different age groups.
Therefore, our finding of an increase or no change in the COG-
g and ACH-g correlation with age fully takes into account
potential changes in the range of the constructs.

Why are correlations relatively lower for preschool chil-
dren and in the early school years? Messick (1984) noted
that cognitive ability interacts with knowledge structures
during the learning process. According to Messick, at initial
stages of learning in a specific area, it is the cognitive abilities
that drive or aid in the acquisition of new knowledge and
skills. As learning proceeds, “these cognitive thinking skills
are applied to address problems of a higher order of complex-
ity than at less advanced levels (p. 223).” Thus if COG-g
represents or underlies some type of general learning mech-
anism that is a primary driver of the acquisition and structur-
ing of new knowledge within and between academic specific
domains, then individual differences in general academic
achievement might mostly be explained by COG-g. Moreover,
over time and with more exposure to school curriculum,
individual differences in the accumulation of skills across
academic domains may more likely be a reflection of individ-
ual differences in COG-g. Perhaps this also explains the higher
correlations in the oldest age groups in the WJ III sample.

4.0.1. How are COG-g and ACH-g related?
Regardless of the developmental trend, an important but

unresolved issue is how COG-g and ACH-g are related. The
results of the current study provide strong evidence that
second-order COG-g and ACH-G are highly related constructs
from K-12. There have been many different hypotheses and
theories put forth about the relation between cognitive and
achievement constructs (and measures), not all of which
are mutually exclusive. Rather than select a “pet” theory we
will provide a number of different possibilities.

First, some researchers have argued that COG-g and ACH-g
are perfectly correlated or even identical constructs (Spearman,
1904). Such arguments seem reasonable because it has been
shown that measures of general academic achievement mostly
measure COG-g (Frey & Detterman, 2004; Koening, Frey, &
Detterman, 2008). Moreover, COG-g factors extracted from
different intelligence test batteries have been found to correlate
perfectlywith each other (Johnson et al., 2004; Keith, Kranzler, &
Flanagan, 2001), and our study shares a similar methodology in
that scores from individually administered test batteries were
analyzed. Nevertheless, the findings from the current study, as
well as those from others (e.g., Deary et al., 2007), indicate that
although latent COG-g and ACH-g factors are highly correlated,
they are not perfectly correlated.

One reason for the lack of perfect correlation may be that
non-cognitive variables might be captured in performance
across academic achievement measures to a lesser extent than
cognitive measures. Individual influences such as Conscien-
tiousness, motivation, and self-belief influence the application
cademic achievement g one and the same g? An exploration
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of cognitive ability to academic learning (Furnham, Chamorro-
Premuzic, & McDougall, 2002; Sternberg, 1999). Models of
school learning indicate that although COG-g has an important
influence on school learning, so does academic motivation and
other variables such as time spent learning and the quality
and amount of instruction (e.g., Carroll, 1963; Haertel,
Walberg, & Weinstein, 1983). 4

Note that most of these theories include cognitive ability
(or aptitude) as an explanatory variable. Temporal prece-
dence has been supported in some research. For example,
Watkins et al. (2007) using data from a sample of special
education students, showed that psychometric intelligence
was predictive of future achievement whereas achievement
was not predictive of future psychometric intelligence. The
findings supported the idea of temporal precedence as well
as evidence that they are distinct constructs. Thus, although
individual differences in general academic achievement may
to a large extent reflect individual differences in COG-g,
they are not identical constructs as other important influ-
ences are involved in general achievement.5

Other, and not necessarily mutually exclusive theories,
from cognitive and developmental psychology, may also de-
scribe why there is a strong relation between COG-g and
ACH-g factors. For example, according to Cattell's (1987)
investment hypothesis, a child's “rate of learning in fields
demanding insights into complex relations—and these fields
include especially the problems of reading, arithmetic, and
abstract reasoning with which he struggles at school—will
depend appreciably on his level of fluid intelligence (though
motivation, goodness of teaching, etc., will still play a part,
as with the acquisitions of low relational complexity)”
(p. 139). Ferrer and McArdle (2004) applied bivariate dual
change score models to longitudinal data on mainstream
education students and found that fluid intelligence (Gf)
was indeed a leading indicator of changes in academic
achievement, while achievement was a lagging indicator of
Gf. Their study supported one aspect of the investment
hypothesis in that Gf is a primary driver of academic achieve-
ment. Again, the findings also supported the notion that
intelligence and achievement are interrelated, yet separable
constructs. 6

What are some of the most important cognitive processes
that may drive academic achievement? Various cognitive
mechanisms underlie COG-g, such as workingmemory, explicit
associative learning, and processing speed (Kaufman, DeYoung,
Gray, Brown, & Mackintosh, 2009).7 These cognitive mecha-
nisms are also associated with academic achievement. In a
4 See Ceci (1991) for evidence that schooling influences IQ scores. It is im-
portant, however, to try to separate changes in the constructs (g) from
changes in the vehicles (IQ scores) of measurement (Jensen, 1998).

5 If a developmental trend of higher correlations is clearly established in
future research, two possible, among other, reasons may be that that vari-
ables related to learning are also captured more in intelligence test scores
with increasing age or that the COG-g factor tends to “dominate” even more
with age.

6 Ferrer and McArdle (2004) also argued aggregating achievement and
cognitive scores obscured important findings, but that discussion is beyond
the scope of this study.

7 In our study some of these more specific cognitive factors (e.g., short-
term memory) also had strong correlations with specific achievement fac-
tors, which suggests that more narrow cognitive abilities or processes influ-
enced specific achievement areas.
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recent study, Vock, Preckel, and Holling (2011) found that the
“basic cognitive abilities”mental speed and short-term memo-
ry exerted their effects on achievement indirectly by affecting
themore “complex cognitive abilities” reasoning and divergent
thinking. Similar results have been found by Rindermann and
Neubauer (2004). Luo, Thomson, and Detterman (2003) also
found that mental speed and more basic elementary processes
played an important role in the relation between COG-g and
academic achievement, although they described the role as
of these processes either as a mediator between COG-g and
achievement, or as a potential common cause.

Other research and theories indicate that there is a recip-
rocal relation between cognitive abilities and achievement
or knowledge acquisition. In a recent study, Rindermann,
Flores-Medoza, and Mansur-Alves (2010) found in Brazilian
and German samples similar effects of fluid intelligence on
crystallized intelligence and vice versa. Their model supports
a mutually beneficial relationship between intelligence and
knowledge. The mutually reinforcing nature of COG-g and
ACH-g is also explained by van der Maas et al. (2006), who
argue that the positive manifold arises due to positive bene-
ficial interactions between cognitive processes during devel-
opment. For example, school learning may boost various
cognitive processes, which in turn impact on cognitive devel-
opment. Or as already noted, Messick (1984) argued that
cognitive ability constantly interacts with knowledge struc-
tures during the learning process. Indeed, Ceci (1991)
reviewed evidence that learning context does have an impor-
tant impact on cognitive development, suggesting that future
research should investigate the mutually reinforcing nature
of abilities and expertise during the development of academ-
ic knowledge (also see Sternberg, 1999).

Another plausible explanation for the correlation between
these two second-order latent COG-g factors is that there may
be a common cause that produced this correlation. Sternberg
(1999) proposes that a collection of skills, including meta-
cognitive skills, learning skills, and thinking skills, underlie
performance on both tests of COG-g and tests of ACH-g.
Indeed, Sternberg argues that performance on tests of COG-
g and ACH-g both require a common set of developing exper-
tise, which explains their high correlation.

In a different, but not incompatible, line of research, Petrill
and Wilkerson (2000) explored various environmental and
genetic causes of the correlation between standardized intel-
ligence and academic achievement tests. Reviewing evidence
for an environment-only position, a gene+environment
hypothesis, and a gene-only hypothesis, they concluded
that “although intelligence and achievement themselves are
influenced by both genetic and environmental factors, the
correlation between intelligence and achievement appears
to be driven mostly by shared genetic influences (p. 191).”
This conclusion was supported by research such as that
by Thompson, Detterman, and Plomin (1991) who found
that cognitive and achievement correlations were largely
explained by a common set of genes. Common and within-
pair environmental differences, however, were primarily
responsible for ability-achievement discrepancies. These
results are intriguing, and future research should be con-
ducted to understand the genetic and environmental factors
that influence COG-g and ACH-g correlations as well as
discrepancies.
cademic achievement g one and the same g? An exploration
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Whatever the causes of the higher COG-g/ACH-g correla-
tion, it is clear that future research is needed to more clearly
delineate the causal cognitive mechanisms and direct and
indirect pathways that determine the COG-g/ACH-g relation-
ship across the lifespan. A number of different causes, includ-
ing the possibilities mentioned here, most likely contribute to
the high correlation we found in our study.

4.0.2. Is ACH-g a reflective latent variable?
These issues relate to the proper conceptualization of

ACH-g. Although wemodeled both COG-g and ACH-g as reflec-
tive latent variables, ACH-g is likely better conceptualized as a
composite or formative latent variable (Bollen & Bauldry,
2011). If ACH-g were a reflective latent variable then an
increase in ACH-g should improve all achievement areas,
including reading, writing, and math, or ACH-g is a common
cause of correlations between those academic areas. It
seems more appropriate that for ACH-g, the causal arrows
would move out from the subtests and flow into the latent
variable, where ACH-g is merely a composite, a combination
of scores across various academic achievement areas.

Consistent with this conceptualization, Kan, Kievit, Dolan,
and van der Maas (2011) recently argued that crystallized
intelligence, as hypothesized in Cattell's investment hypothe-
sis, is purely a statistical entity, and is constructed from mea-
sured variables whereas COG-g is more likely a latent variable
that exists independently of the scientist. They found that
COG-g accounted for the correlations between crystallized
abilities, and Gc (using the CHC model as a framework) was
essentially verbal comprehension (also see Johnson &
Bouchard, 2005). Therefore, for example, if ACH-g, as it some-
times is, were to be equated with “crystallized intelligence”,
ACH-g would be best conceptualized as a statistical factor
that summarizes the covariances among various crystallized
abilities, whereas COG-g is best thought of as a substantive
underlying variable. Regardless of whether one views crystal-
lized intelligence and academic achievement as identical
constructs (and for the most part people do not), ACH-g
may be better conceptualized as a composite variable.

4.0.3. Study limitations and suggestion for future research
The current investigation is not without limitations that

should be addressed in future studies. First, although a stated
strength of this study was the cross-sectional nature of the
data, our discussion of hypothesized causal relations between
COG-g and specific CHC broad factors causing or influencing
achievement must be tempered by the fact that cross-
sectional data were utilized. The current findings, with simi-
lar comprehensive conformed measures of COG-g and ACH-
g, in longitudinal or time-lagged research designs, are needed
to validate or modify the conclusions tendered here.

Second, while we used individually-administered stan-
dardized measures of reading, writing, and math to form
ACH-g, we acknowledge that this is not the only way to mea-
sure academic achievement; other researchers have used dif-
ferent measures to estimate ACH-g, such as GPA or group-
administered national public examination results across 25
academic subjects (e.g., Deary et al., 2007). While we believe
using standardized measures of academic achievement has
its methodological advantages, we acknowledge that rela-
tions between COG-g and ACH-g could be higher when
Please cite this article as: Kaufman, S.B., et al., Are cognitive g and a
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standardized measures are used, since other measures, such
as school grades and group-administered test scores, may
allow for dispositional variables (e.g., conscientiousness and
effort) to come more into play (Duckworth, Quinn, &
Tsukayama, 2011). Future research should use a variety of
different academic achievement outcome measures to assess
the relation between COG-g and ACH-g, and investigate how
the relation differs depending on the measures employed.

Third, researchers often use achievement measures as
proxy variables for g. Students often have achievement, rath-
er than cognitive, test scores in their records from repeated
group testing, so, for example, the composite of their reading,
writing, and math scores may be used to represent a proxy
for COG-g in research investigations. These proxy variables
are often the best estimate of COG-g available and our find-
ings suggest composites scores from standardized achieve-
ment tests are adequate proxies. The two constructs are
not, however, identical and it would be ideal to use measures
of cognitive ability when available.

Alternatively, maintaining separate cognitive and achieve-
ment batteries for purposes of individualized psychoeduca-
tional assessments is important even though the overall
composites scores may have a high correlation. Messick
(1984) notes, “Because student characteristics as well as
social and educational experiences influence current perfor-
mance, the interpretation and implications of educational
achievement measures must be relative to interpersonal and
situational contexts (p. 215).” This idea is also represented
in the Intelligent Testing approach (Kaufman, 1979), in
which the test administrator interprets the students test
profile within the context of his or her pertinent background
information, clinical behaviors observed during testing, and
the latest theories in cognitive science and learning theory.
Therefore, while COG-g and ACH-g may be strongly related
at the group level of analysis, caution but bemade on inferring
cognitive ability from achievement at the individual level in
situations where practical decisions and recommendations
must be made about the individual. For some individuals,
low academic achievement scores may bemore of a reflection
of a lack of opportunity for learning, or a specific learning
disability, whereas for others, it may be more of a reflection
of COG-g.

Lastly, this study included two sets of batteries adminis-
tered to large representative samples, which offers a certain
degree of cross-validation of the findings. Nonetheless,
studies involving Wechsler's scales and other standardized
measures of intelligence and achievement are needed for ad-
ditional cross-validation. Because archival data are available
for a variety of populations, across the age range, who have
been tested on measures of both cognitive ability and
achievement, we urge researchers who have access to these
data to attempt to replicate our findings.

Another caveat pertains to any attempt to explore the
relation between COG-g and ACH-g, namely the distinction
between what constitutes intelligence and what constitutes
achievement is sometimes fuzzy. We limited achievement
to the academic areas of reading, math, and writing. Howev-
er, the Arithmetic subtest has long been a component of
Wechsler's Full Scale IQ; additionally, a variety of measures
of listening comprehension, oral expression, and quantitative
reasoning have been included on standardized measures of
cademic achievement g one and the same g? An exploration
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both intelligence and achievement (including the tests in
the present study). We used the CHC theoretical model to
support our division of subtests into COG-g and ACH-g
(even though that meant including Kaufman and Woodcock
“achievement” subtests in the COG-g analysis). When other
theoretical or clinical or practical models are followed, or
when other measures of academic achievement are used
such as national public examinations (Deary et al., 2007),
some different decisions are likely to be made when labeling
subtests COG or ACH and those decisions may affect the rela-
tion between the COG-g and ACH-g constructs across differ-
ent age groups.

5. Conclusions

Collectively, the findings of this set of studies result in
the conclusion that COG-g and ACH-g are separate but highly
related constructs during childhood and adolescence. The
finding was consistent across two different test batteries.
Considering the prevalence of both standardized tests of cog-
nitive ability and standardized tests of academic achievement
in education, we hope researchers will continue to investi-
gate the fascinating linkages among these two constructs,
their development, and etiology.
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