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a b s t r a c t

The ability to automatically and implicitly detect complex and noisy regularities in the
environment is a fundamental aspect of human cognition. Despite considerable interest
in implicit processes, few researchers have conceptualized implicit learning as an ability
with meaningful individual differences. Instead, various researchers (e.g., Reber, 1993;
Stanovich, 2009) have suggested that individual differences in implicit learning are mini-
mal relative to individual differences in explicit learning. In the current study of English
16–17 year old students, we investigated the association of individual differences in impli-
cit learning with a variety of cognitive and personality variables. Consistent with prior
research and theorizing, implicit learning, as measured by a probabilistic sequence learning
task, was more weakly related to psychometric intelligence than was explicit associative
learning, and was unrelated to working memory. Structural equation modeling revealed
that implicit learning was independently related to two components of psychometric intel-
ligence: verbal analogical reasoning and processing speed. Implicit learning was also inde-
pendently related to academic performance on two foreign language exams (French,
German). Further, implicit learning was significantly associated with aspects of self-
reported personality, including intuition, Openness to Experience, and impulsivity. We dis-
cuss the implications of implicit learning as an ability for dual-process theories of cogni-
tion, intelligence, personality, skill learning, complex cognition, and language acquisition.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

The ability to automatically and implicitly detect com-
plex and noisy regularities in our environment is a funda-
mental aspect of human cognition. Much of this learning
takes place on a daily basis without our intent or conscious
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awareness, and plays a significant role in structuring our
skills, perceptions, and behavior (Hassin, Uleman, & Bargh,
2005; Kihlstrom, 1987; Lewicki, Czyzewska, & Hoffman,
1987; Lewicki & Hill, 1987; Reber, 1967, 1993; Stadler &
Frensch, 1997). This type of learning is often referred to
as implicit learning (Reber, 1967, 1993; Stadler & Frensch,
1997) and is typically characterized by a set of automatic,
associative, nonconscious, and unintentional learning pro-
cesses, as distinguished from the conscious, deliberate, and
reflective learning processes that are thought to be associ-
ated with executive functioning and working memory (e.g.,
Barrett, Tugade, & Engle, 2004).

Despite considerable interest in implicit processes, few
researchers have conceptualized implicit learning as an
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ability. While researchers of the cognitive unconscious
have investigated the nature of the unconscious using the
experimental approach, they have tended to treat individ-
ual differences as ‘‘noise” (error or otherwise unexplained
variance), or have posited that whatever individual differ-
ences in implicit cognition do exist are minimal relative to
individual differences in explicit cognition (Reber, 1993;
Stanovich, 2009). For example, in distinguishing between
the ‘‘algorithmic mind” and the ‘‘autonomous mind”,
Stanovich (2009) states that ‘‘. . .continuous individual dif-
ferences in the autonomous mind are few. The individual
differences that do exist largely reflect damage to cognitive
modules that result in very discontinuous cognitive dys-
function such as autism or the agnosias and alexias
(p.59).” As a consequence of these long-held assumptions,
little research has investigated whether there exist mean-
ingful individual differences in implicit learning or the cor-
relates of such individual differences. In the current study
we investigated the association of implicit learning ability
with a variety of cognitive and personality variables, build-
ing on previous research examining the relation of implicit
learning to psychometric intelligence, basic cognitive
mechanisms, and personality traits. We take up discussion
of each association in turn.

In investigating the relation between implicit learning
and intelligence, researchers have relied on measures of
psychometric intelligence, defined as Spearman’s general
intelligence, or g, the common variance across disparate
tests of cognitive ability (Spearman, 1904). What is the link
between implicit learning and g? According to Reber (1989,
1993) and Reber and Allen (2000), individual differences in
implicit learning should be expected to be largely indepen-
dent of individual differences in psychometric intelligence.
The argument is based on the assumption that implicit
learning is evolutionarily older than explicit cognition, with
the latter developing only with the rise of Homo sapiens. The
older mechanisms of implicit learning are believed to have
been unaffected by the arrival of explicit cognition, which
includes hypothesis-guided learning and deduction, and
they continue to function independently of one another to-
day. These thoughts converge with arguments advanced by
Mackintosh and colleagues (Mackintosh, 1998; McLaren,
Green, & Mackintosh, 1994) that the processes underlying
performance on implicit learning tasks may be automati-
cally associative rather than cognitive in nature, and are
consistent with various other dual-process theories of hu-
man cognition (Chaiken & Trope, 1999; Epstein, Pacini,
Denes-Raj, & Heier, 1996; Evans & Frankish, 2009; Sloman,
1996; Stanovich & West, 2000).

Thus far, the evidence suggests that performance on im-
plicit learning tasks is independent of differences in IQ, or
at most only weakly related. Some paradigms have never
shown an association with psychometric intelligence
(e.g., artificial grammar learning; Gebauer & Mackintosh,
2007; McGeorge, Crawford, & Kelly, 1997; Reber, Walken-
feld, & Hernstadt, 1991), whereas for other paradigms the
majority of studies have not found a significant association
(e.g., serial reaction time learning; Feldman, Kerr, & Streiss-
guth, 1995; Unsworth, Heitz, Schrock, & Engle, 2005; but
see Salthouse, McGuthry, & Hambrick, 1999). The relation
between IQ and one other implicit learning paradigm,
which involves incidental exposure to pictures, has been
investigated only once but was significant (Fletcher, May-
bery, & Bennett, 2000). A possible explanation for the occa-
sional significant association between IQ and implicit
learning is that different implicit learning paradigms are
only weakly correlated with one other (Gebauer & Mackin-
tosh, 2007, in preparation; Pretz, Totz, & Kaufman, 2010;
Salthouse et al., 1999) and may differ in the extent to
which they are measuring implicit learning without rely-
ing on explicit processes (e.g., Seger, 1994).

Direct comparisons of implicit and explicit versions of
specific tasks may further help to explain contradictory re-
sults. In some studies, researchers administered the same
implicit learning task under two conditions: in one condi-
tion, participants were explicitly instructed to detect the
underlying covariation, and in the other condition partici-
pants did not receive such an instruction, thereby making
learning ‘incidental’ to the task requirements. In these
studies, psychometric intelligence was more highly corre-
lated with the task under explicit instructions than under
incidental conditions (Unsworth and Engle, 2005a;
Gebauer & Mackintosh, 2007). Similarly, in study of 455
adolescents, Feldman et al. (1995) separated an intentional
declarative component of an implicit learning task from
the procedural component and found that, although the
declarative learning component significantly correlated
with psychometric intelligence, the procedural component
did not. Overall it appears that individual differences in
psychometric intelligence, which are clearly associated
with variation in explicit cognition, are either weakly or
not at all associated with variation in implicit learning
(e.g. McGeorge et al., 1997; Reber et al., 1991).

While implicit learning is only weakly related to psy-
chometric intelligence, recent research suggests that indi-
vidual differences in implicit learning may make an
independent contribution to complex cognition. Gebauer
and Mackintosh (in preparation) administered a battery
of 15 traditional implicit learning tasks and nine tradi-
tional psychometric intelligence tests to 195 German
school pupils. Factor analyses revealed a low correlation
between two second-order principal components, the first
corresponding to psychometric intelligence and the second
corresponding to implicit learning. In addition, their sec-
ond-order factor of implicit learning correlated signifi-
cantly with school grades in Math and English (a foreign
language for the German participants in the study). Con-
trolling for psychometric intelligence, the correlation be-
tween the implicit learning factor and English grades
remained, while the relation to Math was no longer signif-
icant. Similarly, Pretz et al. (2010) found a significant rela-
tion between a measure of serial reaction time (SRT)
probabilistic learning and Math and English achievement
scores. These results suggest there may be variance in im-
plicit learning ability that is independent of psychometric
intelligence but nevertheless related to some aspects of
school learning.

A number of basic cognitive mechanisms, including
working memory, explicit associative learning, and pro-
cessing speed, have been posited as contributors to intelli-
gence (e.g., Kaufman, DeYoung, Gray, Brown, &
Mackintosh, 2009). Examining their relations to implicit
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learning may help to clarify the relation of implicit learn-
ing to other aspects of cognition. Below we review the
available evidence on the relation of these cognitive mech-
anisms to implicit learning.

1.1. Implicit learning and working memory/executive
attention

Working memory is defined as the ability to maintain,
update, and manipulate information in an active state, over
short delays. It depends heavily on executive attention;
those with a high working memory are better able to con-
trol their attention, maintaining task goals in the presence
of interference (Conway, Cowan, & Bunting, 2001; Kane,
Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, &
Engle, 2004). Over the last two decades, considerable de-
bate has arisen over the question of whether implicit
learning, like working memory, depends on the executive
functions of attention, or whether it arises automatically
as a by-product of processing a set of correlated events
(Jiménez, 2003; Shanks, 2003). Much experimental work
(e.g., Baker, Olson, & Behrmann, 2004; Frensch & Miner,
1995; Jiang & Chun, 2001; Jiménez & Mendez, 1999;
Turke-Browne, Junge, & Scholl, 2005) appears to be con-
verging on the conclusion that, for implicit learning to oc-
cur, selective attention to the relevant stimuli is required.
However, learning about the stimuli that are selectively at-
tended to then occurs automatically, regardless of an
intention to learn, and without necessitating any further
executive processing resources.

One implication of this conclusion is that central exec-
utive resources should be engaged under explicit learning
instructions, to guide the focus of attention, whereas only
selection processes should be required for incidental learn-
ing (Cowan, 1988, 1995; Frensch & Miner, 1995; Johnson &
Hirst, 1993). Working within this framework, Unsworth
and Engle (2005) demonstrated that working memory dif-
ferences emerge in an implicit learning task under explicit
instructions to detect the covariation, but not under inci-
dental conditions where no such instructions were given.
Similarly, Feldman et al. (1995) found nonsignificant corre-
lations between implicit learning and measures of working
memory.

In sum, the available data suggest that implicit learning
operates in an automatic fashion once relatively low-level
perceptual attention is selectively allocated to the appro-
priate stimuli, without necessarily requiring executive
attention. This leads us to hypothesize that individual dif-
ferences in implicit learning are not associated with indi-
vidual differences in working memory.

1.2. Implicit learning and explicit associative learning

Associative learning, as conceived in the implicit learn-
ing literature, differs from the type of associative learning
typically discussed in the intelligence literature (e.g.,
Underwood, Boruch, & Malmi, 1978; Williams & Pearlberg,
2006). In the implicit learning literature, learning is often
termed as associative (as opposed to cognitive), when
learning proceeds incidentally, because it describes the
incidental formation of associations. Connectionist model-
ing based on this assumption has successfully modeled
many aspects of implicit learning (e.g., Cleeremans, 1993;
Cleeremans & Dienes, 2008). By contrast, in the intelli-
gence literature, associative learning is often used to de-
scribe the learning of associations acquired consciously
and intentionally according to explicit instruction and
feedback. To date, no study has investigated the relation-
ship between implicit learning and explicit associative
learning. Although prior studies have ostensibly compared
explicit and implicit learning (e.g., Reber et al., 1991), mea-
sures of ‘‘explicit learning” in these studies have typically
been measures of explicit reasoning, such as series comple-
tion, that do not, in fact, require learning over the course of
the experiment. Despite the fact that both implicit learning
and explicit associative learning must involve the forma-
tion of associations, we hypothesized that they are unre-
lated as abilities, for the same reasons that working
memory seems likely to be unrelated to implicit learning:
executive attention should be required only when learning
is intentional.

1.3. Implicit learning and processing speed

Processing speed involves the speed at which very sim-
ple operations can be performed. Differences in intelligence
may partly reflect the overall efficiency and speed of the
nervous system (Anderson, 1992; Jensen, 1998), in addition
to more specific capabilities like working memory
(Kaufman et al., 2009). Given the primitive and broad nat-
ure of processing speed as a parameter, one might expect
it to be related to individual differences in implicit learning,
even in the absence of implicit learning’s association with
more complex cognitive mechanisms. Accordingly, Salt-
house et al. (1999) found a significant relation between
two processing speed measures and implicit learning. One
of these measures was the Digit-Symbol Coding test, part
of the standard WAIS battery for IQ. Although the factor
structure of the WAIS indicates a processing speed factor
as one of four second-level factors below g, the processing
speed tests load on g more weakly than other types of test
(Deary, 2001). We therefore expected that, although impli-
cit learning may be only weakly or not at all related to g, it
may show a significant relation to processing speed.

1.3.1. Implicit learning and personality
Research on the personality correlates of implicit learn-

ing is limited. However, theoretical links between implicit
learning and intuition allowed us, in conjunction with the
available evidence, to make predictions regarding person-
ality traits reflecting an intuitive cognitive style, especially
those related to the Big Five trait domain of Openness/
Intellect and to impulsivity.

1.3.1.1. Intuition. Implicit learning and intuition are closely
related constructs. Indeed, it has been argued that intuition
is the subjective experience associated with the accumu-
lated knowledge gained through an implicit learning expe-
rience (Dienes, 2008; Lieberman, 2000; Reber, 1989). Reber
(1989) further explains how implicit learning and intuition
can be related:
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To have an intuitive sense of what is right and proper, to
have a vague feeling of the goal of an extended process
of thought, to ‘‘get the point” without really being able
to verbalise what it is that one has gotten, is to have
gone through an implicit learning experience and have
built up the requisite representative knowledge base
to allow for such a judgement (p. 233).

Woolhouse and Bayne (2000) looked at the relation be-
tween personality as measured by the Myers-Briggs Type
Indicator (MBTI) (Myers, McCaulley, Quenk, & Hammer,
1998), and performance on a hidden covariance detection
task (Lewicki, Hill, & Sasaki, 1989), in which participants
implicitly learned to judge the job suitability of job appli-
cant personality profiles based on the covariance between
personality profiles and information about job suitability
in the training phase. A test phase with new profiles
showed that participants learned the covariation regard-
less of whether they were explicitly aware of the rules.
Individual differences emerged, however, when consider-
ing task performance along the MBTI dimension of intui-
tion/sensation, which was designed to measure the
extent to which people prefer to make decisions using fac-
tual, simple, and conventional methods (sensation) vs. a
preference for the possible, complex, and original (intui-
tion) (McCrae, 1994). Sensation types were more likely to
be consciously aware of the covariation and apply it effec-
tively. Among those who lacked awareness of the underly-
ing rule, however, there was a tendency for participants
with a more intuitive personality to make greater and
more accurate use of their intuition on the implicit learn-
ing task. These authors concluded that personality influ-
ences whether people will use intuition based on implicit
knowledge to help them arrive at a correct answer in the
absence of explicit knowledge.

1.3.1.2. Openness/Intellect. The five factor model or Big Five
is the most widely used and best validated taxonomy of
personality traits (Goldberg, 1990; Markon, Krueger, &
Watson, 2005). Within the Big Five, the MBTI dimension
of sensing-intuition falls within the domain of Openness/
Intellect (McCrae, 1994). The compound label for this
dimension reflects an old debate about how best to charac-
terize this personality factor, with some researchers favor-
ing the label ‘‘Intellect” (e.g., Goldberg, 1990) and others
favoring ‘‘Openness to Experience” (e.g., Costa & McCrae,
1992). This debate has been largely resolved by the recog-
nition that Openness and Intellect reflect separable but re-
lated aspects of the larger domain (Johnson, 1994; Saucier,
1992). This distinction was recently given more empirical
support by the finding of two correlated factors within
15 scales measuring different lower-level facets of Open-
ness/Intellect (DeYoung, Quilty, & Peterson, 2007). The
two factors were clearly recognizable as Intellect and
Openness, with Intellect reflecting a combination of per-
ceived cognitive ability and tendency toward intellectual
engagement, and Openness reflecting artistic and contem-
plative qualities and engagement with sensory and percep-
tual information. The analysis of DeYoung et al. (2007)
generated new scales to measure Openness and Intellect
separately and also demonstrated that different subscales
of the NEO PI-R Openness to Experience scale (Costa &
McCrae, 1992) could be used as markers of Openness and
Intellect. McCrae (1994) found that the MBTI intuition
scale was more strongly related to Openness than to Intel-
lect, at the facet level.

Based on the link between Openness and intuition, we
hypothesized that scales loading on Openness would be
positively associated with implicit learning. Scales related
to Intellect, in contrast, appear to be more closely linked
to intelligence, working memory, and explicit associative
learning (DeYoung, Peterson, & Higgins, 2005; DeYoung,
Shamosh, Green, Braver, & Gray, 2009). We hypothesized
that they would be associated with these other cognitive
abilities, but not with implicit learning.

1.3.1.3. Impulsivity. In recent years, dual-process theories
of reasoning have become increasingly required for
explaining cognitive, personality, and social processes
(see Evans & Frankish, 2009). Although the precise specifi-
cations of the theories differ, most have in common the
idea that humans possess both automatic and controlled
processes that jointly contribute to behavior. This idea
has recently been elaborated on by Strack and Deutsch
(2004) who argue that behavior is multiply determined
by both impulsive and reflective processes.

Prior research shows that impulsivity is negatively re-
lated to both g and working memory (Kuntsi et al., 2004;
Shamosh & Gray, 2007; Shamosh et al., 2008). Here we
investigate the relation between implicit learning and
impulsivity. According to Strack and Deutsch (2004), the
impulsive system involves an associative network that is
automatically activated through learning and experience.
They argue that ‘‘structures emerge in the impulsive sys-
tem that bind together frequently co-occurring features
and form associative clusters (p. 223).” They further state
that ‘‘the impulsive system has low flexibility but is fast
and needs no attentional resources” (p. 224). This charac-
terization strongly suggests that implicit learning ability
might be positively associated with trait impulsivity.

Whiteside and Lynam (2001) identified four major
dimensions of variance pertaining to impulsivity: urgency,
lack of premeditation, lack of perseverance, and sensation
seeking. We hypothesized that the most relevant form of
impulsivity for implicit learning is lack of premeditation,
in that individuals who deliberate extensively may do so
in part because they are poor at detecting incidental covar-
iances and therefore have reduced access to quick and
intuitive decisions.
2. The present study

To investigate the cognitive and personality correlates
of individual differences in implicit learning we used what
we believe to be the best measure of implicit learning cur-
rently available (see Section 3). In line with the prior liter-
ature just reviewed, our hypotheses regarding the pattern
of relations to implicit learning are as follows:

Hypothesis 1. Psychometric intelligence is correlated
more strongly with explicit associative learning than
with implicit learning.
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Hypothesis 2. Implicit learning is not related to working
memory, or explicit associative learning, but is related
to processing speed. Implicit learning is also related
to other measures of cognitive performance indepen-
dently of psychometric intelligence and the elemen-
tary cognitive tasks associated with psychometric
intelligence.

To assess these two hypotheses, we examined zero-or-
der correlations between individual differences in implicit
learning and tests of these other cognitive variables,
including tests of academic achievement. Then we as-
sessed the association of latent cognitive constructs with
implicit learning.

Hypothesis 3. Implicit learning is significantly associated
with Openness and the related trait of Intuition but is
not associated with Intellect. Further, there is a double
dissociation, with Intellect related to working memory
(DeYoung et al., 2005, 2009) and Openness related to
implicit learning.

To assess this hypothesis, we examined zero-order cor-
relations between implicit learning and markers of Open-
ness and Intellect, including MBTI Intuition, as well as
correlations of implicit learning with latent Openness and
Intellect variables. To test the double dissociation, we cre-
ated a structural model using Intellect and Openness as
simultaneous predictors of implicit learning and working
memory.

Hypothesis 4. Impulsivity—and particularly lack of pre-
meditation—is positively correlated with implicit
learning.

To assess this hypothesis, we examined zero-order cor-
relations between implicit learning and the four impulsiv-
ity dimensions identified by Whiteside and Lynam (2001).

3. Method

3.1. Participants

The 153 participants (47 males and 106 females) in-
cluded in the analysis were aged 16–18 years (Mean =
16.9, SD = .65), and attended a selective sixth form college
(which takes high-achieving students who are in their last
2 years of secondary education) in Cambridge, England.
Data were collected for 27 other participants, but 24 of
these were removed from the analysis because they were
missing implicit learning scores, 2 were removed because
their Raven Advanced Progressive Matrices scores were be-
low chance, and 1 participant was removed due to obvious
lack of effort (e.g., frequent chatting). 147 participants
completed all three testing sessions. Due to computer er-
rors and time constraints, not all participants completed
all the tests. Where possible, we imputed missing values
(see below). A subset of this sample was also analyzed in
an examination of the relation of elementary cognitive
abilities to intelligence (Kaufman et al., 2009). Those anal-
yses did not include implicit learning or personality
questionnaires.
3.2. Procedure

Tests were administered in groups at PC desktop termi-
nals during the course of three 1.5-h sessions. Tests were
presented to participants in the same fixed order. As far
as possible, all participants received all tests in the same
order. Participants earned £20 for their participation in
all three testing sessions.
3.2.1. Implicit learning
3.2.1.1. Serial reaction time (SRT) learning. To investigate
our hypotheses relating to implicit learning, we focused
on a probabilistic version of the serial reaction time task
(SRT)—an implicit learning task that the evidence indicates
to be the best measure of implicit learning currently avail-
able. According to Shanks (2005), the SRT task and the Arti-
ficial Grammar learning tasks have become the
paradigmatic methods of studying implicit learning. There
are reasons to believe, however, that the SRT task is the
better measure of implicit learning (Destrebecqz & Cleere-
mans, 2001). First, sequence learning in the SRT task is
more incidental than in Artificial Grammar Learning:
learning in the SRT task is an incidental result of respond-
ing to stimuli without any instructions to memorize the
series or look for underlying rules, whereas, in Artificial
Grammar Learning, participants are explicitly told to mem-
orize strings. Second, in Artificial Grammar Learning, there
is an explicit separation between the acquisition and test
phases: in the test phases, participants are typically in-
formed about the existence of a structure, and are told to
try to exploit it. In contrast, the expression of sequence
learning in SRT can be measured using reaction time, with-
out telling the participants that there exist both sequence
and control trials. This makes the probabilistic SRT task
an excellent paradigm to use to minimize the impact of ex-
plicit sequence knowledge (Stefaniak, Willems, Adam, &
Meulemans, 2008).

The probabilistic version of the SRT task is particularly
appropriate because the control trials are interspersed
with sequence trials in every block, and learning can thus
be measured online (i.e., during the training phase). Fur-
ther, interspersing structured with control trials has the
dual advantages of making it more difficult for participants
to explicitly discover the existence of a sequence and of
making the task more ecologically valid: implicit learning
in the real world often happens under conditions of uncer-
tainty, where information to be learned is noisy and prob-
abilistic instead of deterministic (Jiménez & Vázquez,
2005).

In the SRT task, participants saw a stimulus appear at
one of four locations on the computer screen, and their
task was to press the corresponding key as fast and as
accurately as possible. Unknown to the participants, the
sequence of successive stimuli followed a repeating se-
quence intermixed 15% of the time with an alternate se-
quence (Schvaneveldt & Gómez, 1998). In particular,
Sequence A (1–2–1–4–3–2–4–1–3–4–2–3) occurred with
a probability of 0.85, and Sequence B (3–2–3–4–1–2–4–
3–1–4–2–1) occurred with a probability of 0.15. Fig. 1
shows a representation of this procedure.



Fig. 1. Structure of a probabilistic sequence learning procedure. Note. (a) Representation of the stimulus and the required key-presses for trial types 1, 2, 3,
and 4, respectively. (b) Representation of the two 12-trial sequences used to generate either training or control trials for different participants (Sequences A
and B). Both sequences are represented as recurrent structures to highlight that the sequences are continuously recycled, and that the starting point is
randomly chosen on each block. A sample of possible transitions between sequences is also represented to illustrate that these transitions respect the
second-order conditionals of the upcoming sequence. For instance, if a participant is trained with Sequence A and a control trial is scheduled to appear after
the series 2–1–4, then the next trial would appear at location 2, which is the successor of the series 1–4 according to Sequence B. (c) Representation of the
‘‘trial by trial” substitution procedures employed in these probabilistic sequence learning tasks. Individual trials obeying either the training or the control
conditionals are interspersed with each other in a way that respects the transitions between trials as well as the overall likelihood of each type of trial (e.g.,
85% of training vs. 15% of control trials). Notice that most trials obeying the unlikely control sequence would appear isolated, but small groups of control
trials are also possible.
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Note that these two sequences have been built to differ
exclusively in the second-order conditional information
that they convey (Reed & Johnson, 1994). Thus, each loca-
tion appears with the same likelihood in each of these two
structures, and each first-order transition is also equally
likely in both sequences. However, second-order informa-
tion leads to a different prediction for each sequence, so
that learning about this second-order conditional informa-
tion will lead to a difference in responding to each
sequence.

To elaborate on the probabilistic nature of the design:
on each trial, the successor could follow either Sequence
A or Sequence B. For example, the most common successor
in Sequence A after 1–2 was 1, but on some trials (15% of
the time) the successor was instead 4, as stipulated by Se-
quence B after the context 1–2. After this substitution, the
context would be 2–4, and hence the most common suc-
cessor (85% of the time) was the usual location marked
by Sequence A to appear in this context (1). However, there
was a certain probability (15%) that the successor marked
by Sequence B (3) could occur.
During the practice block (0), probable and improbable
transitions occurred with equal likelihood. Thus, the next
trial in sequence was equally likely to be determined by
Sequence A as by Sequence B. After this practice block, par-
ticipants completed eight training blocks in which transi-
tions were generated from Sequence A 85% of the time
and from Sequence B 15% of the trials. Participants com-
pleted 120 trials in each block, 960 trials in total. Within
each block, all trials were initially randomized but then
presented in the same fixed order for each participant. This
was done to maximize the extent to which individual dif-
ferences reflect trait differences rather than differences in
item order.

As noted above, there are reasons to believe that this
probabilistic version of the SRT is an excellent measure of
implicit learning (Jiménez & Vázquez, 2005). For one, the
probabilistic version does not contain any first order infor-
mation that could account for learning, because after each
location any other is equally probable. Secondly, the prob-
abilistic nature of the task minimizes the effect of chunk
learning, and instead maximizes the need to learn the con-
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ditional probabilities of each successor in each context.
During post-experiment interviews, no participants indi-
cated knowledge that the transitions were probabilistic
or conditional on the two previous locations.

To assess learning on the probabilistic SRT task for each
participant, we first took the difference between the aver-
age time to respond to probable trials and the average time
to respond to improbable trials. Error responses were dis-
carded (3.5% of trials), as well as outliers more than three
standard deviations from the mean, which were computed
individually for each block and participant. On average,
2% of the trials qualified as outliers according to these
criteria.

When investigating individual differences, it has been
assumed that a simple RT-difference learning score, like
the one just described, can be used to provide a rank order-
ing of ability to learn on the SRT. However, this assumption
may be flawed because the exact difference in RT may not
be stable enough to provide a reliable rank order. More
important than the exact RT difference between probable
and improbable trials may be simply whether or not indi-
viduals show any reliable difference between RTs to prob-
able and improbable trials. For this reason, we investigated
a new scoring method based on a binary index of whether
participants showed learning in each block.

The crucial statistic to consider before adopting this
new method is its reliability. When measuring variables
that may qualify as traits (that is, relatively stable individ-
ual differences), a key index of a measure’s reliability is its
internal consistency (that is, the rank-order stability of
individuals’ scores on different items or sections of the
measure). Unreliability attenuates the effect size of associ-
ations between measures. The less reliable is a measure of
some trait, the lower its possible observed correlation with
another variable can be, regardless of the true correlation
between that trait and the other variable. Behavioral tasks,
like SRT, often show relatively low reliabilities, and any
increment in reliability that can be achieved is an impor-
tant step toward successfully measuring individual differ-
ences in implicit learning.

For the new SRT scoring method, rather than calculate
an exact RT difference, we simply assessed whether partic-
ipants showed a learning effect at least as large as the
learning effect evident in the sample as a whole, across
blocks 3–8 (blocks 1 and 2 were not included because
learning was not clearly established in the sample as a
whole until block 3; see Section 4 for details). The global
effect size for the sample was used because it provided a
non-arbitrary criterion for learning. The average Cohen’s
d for probable vs. improbable trials across these blocks
was .19. Because the average difference between the con-
ditions across these blocks was .19 standard deviations,
we assessed for each participant in each block of learning
whether their mean RT for probable trials was less than
the difference between their mean RT for improbable trials
and .19 times their standard deviation for RT on improba-
ble trials. If it was less, they received a score of 1. If it was
not, they received a score of 0. To calculate a total score for
each participant, we summed their score across the last six
blocks, yielding a minimum score of 0 and a maximum
score of 6.
The new scoring method demonstrated an acceptable
split-half reliability (using Spearman–Brown correction)
of .44, and the distribution was normal. This level of reli-
ability is similar to the reliability of implicit learning previ-
ously reported in the literature (Reber et al., 1991; Dienes,
1992). The old scoring method relying on RT differences
demonstrated a split-half reliability of only .33, for the
same six blocks. Therefore, all results are presented utiliz-
ing the new scoring method. The correlation between RT
difference scores and scores from the new method was
.76, and a side by side comparison of correlations using
the old and new scoring methods showed a similar pattern
in the direction of correlations, but with consistently stron-
ger effects using the new, more reliable scoring method.
This is what one would expect, given that lower reliability
leads to greater attenuation of correlations. Further, a re-
cently published study (Pretz et al., 2010) used the same
probabilistic SRT task in an undergraduate sample, and
also adopted the same novel scoring method, and found
significant correlations with tests of Math and English
achievement. Thus, the method has proved effective in
multiple, demographically different samples.

3.2.2. Psychometric intelligence
To create a representative latent g factor we used one

verbal test, one perceptual reasoning test, and one mental
rotation test. Using one of the largest batteries of cognitive
tests ever collected, Johnson and Bouchard (2005) demon-
strated that, below the g factor, there are three separable
second-stratum domains of cognitive ability: verbal, per-
ceptual, and mental rotation. Therefore, use of one test
from each domain should produce a well-balanced g.

3.2.2.1. Raven’s advanced progressive matrices test, set II
(Ravens). Ravens (Raven, Raven, & Court, 1998) is a mea-
sure of abstract perceptual reasoning. Each item consists
of a 3 � 3 matrix of geometric patterns with the bottom
right pattern missing. The participants’ task is to select
the option that correctly completes the matrix. There are
eight alternative answers for each item. The test is pre-
sented in increasing order of difficulty. After two practice
items with feedback, participants were then given 45 min
to complete 36 items.

3.2.2.2. DAT verbal reasoning test. The verbal reasoning sec-
tion of the Differential Aptitudes Test (DAT-V, The Psycho-
logical Corporation, 1995) was administered to each
participant. Each problem consisted of a sentence with
two words missing, and participants chose a pair of words
from the answer options that were analogically related to
the words in the sentence. After two practice items, partic-
ipants had 15 min to complete 40 problems.

3.2.2.3. Mental rotations test, set A (MRT-A). The MRT-A
(Vandenberg & Kruse, 1978) contains 24 problems and
measures mental rotation ability, and appears to be a dis-
tinct component of intelligence to the same extent as ver-
bal ability and perceptual ability (Johnson & Bouchard,
2005). Each problem in the MRT-A shows a three-dimen-
sional target figure paired with four choice figures, two
of which are rotated versions of the target figure. To score



Table 1
Correlations among all measures of g, elementary cognitive tasks, implicit learning, Intellect, Openness, Intuition, and Impulsivity.

Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1. Ravens –
2. DAT Verbal reasoning

test
.50 –

3. Mental rotations test .58 .41 –
4. Operation span task .34 .44 .27 –
5. Verbal speed test .22 .22 .17 .23 –
6. Figural speed test .26 .12 .16 .10 .23 –
7. Numerical speed test .25 .10 .21 .12 .14 .56 –
8. Three - Term

Contingency
Learning

.31 .37 .23 .20 .14 .19 .04 –

9. Paired - associates
learning

.27 .25 .14 .11 .23 .20 �.04 .67 –

10. Implicit learning .13 .22 .05 .05 .00 .25 .12 .05 .06 –
11. BFAS Intellect .32 .41 .30 .27 .16 .17 .06 .24 .11 .07 –
12. BFAS Openness .12 .29 .06 .19 .04 .22 .11 .14 .06 .29 .19 –
13.NEO Fantasy .19 .21 .14 .22 �.02 .11 .02 .17 .06 .16 .18 .47 –
14. NEO Aesthetics .10 .20 �.04 .11 .08 .24 .20 .12 .03 .21 .28 .72 .36 –
15. NEO Feeling .06 .13 .05 .16 .05 .20 .11 .20 .13 .14 .21 .50 .36 .49 –
16. NEO Action .06 .11 .02 .13 �.03 .26 .13 .05 .01 .14 .22 .38 .18 .37 .38 –
17. NEO Ideas .42 .37 .30 .26 .12 .27 .18 .30 .13 .13 .71 .34 .31 .47 .33 .27 –
18. NEO Values .12 .24 .15 .17 .14 .15 �.04 .07 .02 .12 .21 .29 .20 .20 .22 .26 .19 –
19. MBTI Intuition .16 .24 .12 .17 �.02 .14 .07 .12 �.06 .25 .17 .45 .39 .36 .16 .25 .34 .13 –
20. REI Rational

Favorability
.40 .31 .28 .27 .06 .20 .10 .24 .15 .16 .70 .20 .22 .27 .28 .23 .79 .22 .26 –

21. UPPS Premeditation .00 �.09 .05 �.14 .09 .04 .02 .07 .07 �.23 .08 �.29 �.36 �.14 �.16 �.36 .05 �.19 �.32 .06 –
22. UPPS Urgency �.08 �.02 �.01 .17 .07 �.10 �.07 .07 .04 .02 �.15 .20 .17 .14 .20 .05 �.09 �.01 .05 �.20 �.38 –
23. UPPS Sensation

seeking
.02 .05 .23 .02 �.03 .23 .34 �.02 �.01 .16 .05 .17 .07 .23 .15 .40 .04 .02 .13 �.12 �.28 .08 –

24. UPPS Perseverance .00 �.07 �.07 �.13 .03 .19 .07 .02 .13 �.06 .24 �.20 �.24 �.01 �.01 .01 .13 �.14 �.16 .26 .44 �.41 �.03 –

N 153 153 153 153 147 147 147 147 147 153 145 145 145 145 145 145 145 145 145 146 144 144 144 144
Mean 21.8 24.4 13.2 43.9 40.9 64.4 30.9 42.6 56.2 3.1 3.6 3.8 3.9 3.4 3.8 3.1 3.5 3.9 18.7 3.6 3.2 3.3 3.7 3.2
SD 5.2 5.9 5.3 8.5 9.3 10.2 4.3 21.4 19.2 1.5 .60 .60 .65 .82 .62 .54 .70 .49 5.2 .65 .65 .63 .68 .72
Reliability .80 .79 .78 .72 .65 .65 .65 .93 .96 .44 .78 .73 .78 .80 .77 .60 .80 .62 .84 .84 .87 .82 .84 .87

Note. Correlations > .16 in absolute value are significant at p < .05.
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a point, both rotated versions must be identified. After two
practice items with feedback and an explanation, the first
12 problems were attempted in 4 min with a 2 min break
before attempting the second 12 in another 4 min. The
maximum score is 24.

Mean scores on the three cognitive ability measures
(Ravens, DAT-V, and MRT-A) suggested a mean IQ for the
entire sample in the range of 100–110 (see Table 1).

3.2.3. Elementary cognitive tasks
3.2.3.1. Operation span task (Turner & Engle, 1989). The
Operation Span (Ospan) was used as our measure of work-
ing memory. Ospan is one of the most well validated and
widely administered measures of working memory avail-
able in the literature (Unsworth & Engle, 2005b). Addition-
ally, prior research has demonstrated significant
correlations between Operation Span and g (e.g., Unsworth
and Engle, 2005b).

Ospan requires participants to store a series of unre-
lated words in memory while simultaneously solving a ser-
ies of simple math operations, such as ‘‘Is (9/3) � 1 = 1?”.
After participants selected the answer, they were pre-
sented with a word (e.g., DOG) to recall. Then participants
moved onto the next operation-word string. This proce-
dure was repeated until the end of a set, which varied from
two to six items in length. Participants were then
prompted to recall all the words from the past set in the
same order in which they were presented by typing each
word into a box, and using the up and down arrow keys
on the keyboard to cycle through the boxes.

Before the test phase, participants encountered three
practice problems with set size two, where they received
feedback about their performance. During these practice
trials, we calculated for each participant how long it took
them to solve the math operations. Consistent with the
methodology of the Automated Ospan task (Unsworth
et al., 2005), we did this to control for individual differ-
ences in the time required to solve the math operations.
Their mean performance time to solve the equations, plus
2.5SD was used as the time limit for the presentation of the
math equations during the main task.

The Ospan score is the sum of all correctly recalled
words in their correct positions. The number of operation
word-pairs in a set was varied between two, three, four,
five, and six with three sets of each. Overall score could
range from 0 to 60.

3.3. Explicit associative learning tasks

For both explicit associative learning tasks, all stimuli
were initially randomized but then presented in the same
fixed order for each participant. This was done to maxi-
mize the extent to which individual differences reflect trait
differences rather than differences in item order.

Three-Term Contingency Learning (Williams & Pearlberg,
2006). The Three-Term Contingency Learning (3-Term)
task consists of four learning blocks, each followed imme-
diately by a test block. In each learning block, participants
were presented with 10 unique words. Each word was
associated with three different words, contingent on a
key press. The participants’ task was to learn the word
associated with each stimulus–response pair. For instance,
on one trial the word ‘‘LAB” might show on the screen with
the letters ‘‘A”, ‘‘B”, and ‘‘C” listed underneath. When par-
ticipants selected ‘‘A”, they saw one association (e.g.,
PUN), when they selected ‘‘B”, they saw a second associa-
tion (e.g., TRY), and when they selected ‘‘C” they saw a
third association (e.g., EGG). The duration of exposure to
each association was self-paced (max 2.5 s) with change-
over intervals set at 0.2 s. After the single presentation of
all 10 stimulus words with the 30 outcome words, subjects
were immediately presented with a test block.

The test blocks were identical to the learning blocks
with one exception: instead of typing the letters ‘‘A”, ‘‘B”,
or ‘‘C” to produce the outcome words on the screen, a stim-
ulus word appeared on the screen along with one of ‘‘A”,
‘‘B”, or ‘‘C”, and participants were required to type in the
outcome word corresponding to that stimulus–response
pair. Together with feedback on their answer, the correct
association was shown to the participants until they
pressed ‘‘ENTER”, when the next stimulus word was pre-
sented. Once the test block was completed, participants
immediately moved to a second learning block in which
the same stimulus words were presented in a different or-
der. Across the four test blocks, possible overall scores ran-
ged from 0 to 120.

Paired-associates (PA) learning (Williams & Pearlberg,
2006). In this task, participants were presented with 30
pairs of words. A cue word was presented until the partic-
ipant pressed ENTER, or until 2.5 s elapsed, after which the
cue’s pair appeared on the screen. They then remained to-
gether on screen, again until the participant pressed EN-
TER, or until 2.5 s elapsed, after which both disappeared
and the next cue word was displayed. The test phase was
identical to training, except instead of pressing ‘‘ENTER”
to view the second word of each pair subjects were re-
quired to type that word. Together with feedback on their
answer, the correct association was shown to the partici-
pant until they pressed ‘‘ENTER”, when the next word
cue was presented. Once the test phase was completed,
participants immediately moved to a second learning block
in which the same stimulus words were presented in a dif-
ferent order. In total, there were four learning and four test
blocks, with possible overall scores ranging from 0 to 120.

3.4. Processing speed tests

Verbal speed test (Speed-V): an English adaptation of a
sub-test from the Berlin model of Intelligence Structure
(BIS; Jaeger, 1982, 1984). The task was to fill in the missing
letter from a 7-letter word; 60 s were given to complete
the 57 items. The score is the number completed correctly
in 60 s.

Numerical speed test (Speed-N): the Speed of Information
Processing sub-test from the British Ability Scales (Elliot,
1996). The task was to cross out the highest number in
each row of five numbers; 60 s were given to complete
48 items. The score is the number completed correctly in
60 s.

Figural speed test (Speed-F): Digit-Symbol Coding, a sub-
test of the WAIS-R that loads on the ‘‘processing speed”
factor (Deary, 2001). The test was to enter the appropriate
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symbol (given by a key at the top of the form) beneath a
random series of digits; 90 s were given to complete 93
items. The score is the number completed correctly in 90 s.

3.4.1. Academic achievement
3.4.1.1. General certificate of secondary education
(GCSE). The participants in this study reported GCSE
scores. GCSE exams are national, subject-based exams ta-
ken by students in England between the ages of 15–16
(11th year of schooling) before entry to 6th form and,
depending on the subject, involving some combination of
coursework and written, listening, speaking, and reading
examinations. The year the participants took their GCSE’s,
GCSE English language, Math, and Science (whether double
or single) were compulsory. Although a second language
was not compulsory at that time, most schools encourage
it, and the requirements vary from school to school. In
the school in which the participants took the test, a great
majority took such a course, which is consistent with the
quality of students at that school.

Based on prior reports of a correlation between implicit
learning and Math and language achievement (Gebauer &
Mackintosh, in preparation; Pretz et al., 2010), we focused
our analysis just on Math and language-related courses.

3.4.2. Personality
3.4.2.1. The Big Five aspect scales (BFAS). The Big Five Aspect
Scales (BFAS) assess the personality traits of the five factor
model or Big Five (DeYoung et al., 2007). In the BFAS, each
of the five major domains is broken down into two sub-
traits that capture key aspects of the domain. These aspects
were derived empirically from factor analysis of facet-level
scales from two major Big Five instruments, the NEO PI-R
(Costa & McCrae, 1992) and the AB5C-IPIP (Goldberg,
1999). Additionally, the two aspects in each domain appear
to correspond to genetic factors found within the facets of
the NEO PI-R (Jang, Livesley, Angleitner, Riemann, & Ver-
non, 2002). In the Big Five domain of Openness/Intellect,
not surprisingly, the two aspects clearly reflect Openness
and Intellect.

3.4.2.2. NEO-PI-R. The Openness to Experience scale of the
NEO-PI-R was administered. The Openness to Experience
scale is divided into six subscales or ‘‘facets” (descriptions
according to Piedmont, 1998): Openness to Aesthetics
(deep appreciation for art and beauty), Openness to Action
(preference for novelty and variety), Openness to Fantasy
(vivid imagination and active fantasy life), Openness to
Feelings (receptivity to one’s own inner feelings and emo-
tions), Openness to Ideas (active pursuit of intellectual
interests for their own sake and a willingness to consider
new, perhaps unconventional ideas), and Openness to Val-
ues (readiness to reexamine social, political, and religious
values). The Aesthetics, Fantasy, Feelings, and Actions fac-
ets are good markers of the Openness aspect of the domain,
whereas the Ideas facet is a good marker of Intellect
(DeYoung et al., 2007).

3.4.2.3. Rational–Experiential Inventory (REI). The Rational–
Experiential Inventory (REI) was designed to measure the
two different aspects of Epstein’s Rational–Experiential
model of personality (Epstein, Pacini, & Norris, 1998; Pacini
& Epstein, 1999). The REI is a 20-item questionnaire con-
sisting of two subscales—the rational and experiential
inventories. The rational inventory attempts to quantify
an individual’s ability and preference for relying on logic
and analysis in making decisions and solving problems.
This scale is based on the Need for Cognition Scale (Caciop-
po & Petty, 1982), which correlates very highly with the
Ideas facet of the NEO PI-R (r = .78; Cacioppo, Petty, Fein-
stein, & Jarvis, 1996). The REI rational favorability subscale
was used to provide a third marker of Intellect in analysis
with latent variables.
3.4.2.4. The UPPS impulsivity scale. The UPPS Impulsivity
Scale was derived from factor analysis of a large number
of scales commonly used to measure impulsivity-related
constructs (Whiteside & Lynam, 2001). This analysis found
four factors, labeled Urgency, (lack of) Premeditation, (lack
of) Perseverance, and Sensation Seeking. According to
Whiteside, Lynam, Miller, and Reynolds (2005, p. 561), ur-
gency ‘‘refers to the tendency to engage in impulsive
behaviors under conditions of negative affect despite the
potentially harmful longer-term consequences” (lack of)
Premeditation ‘‘refers to a difficulty in thinking and reflect-
ing on the consequences of an act before engaging in that
act” (lack of) Perseverance refers to both ‘‘an individual’s
inability to remain focused on a task that may be boring
or difficult”, and ‘‘difficulty completing projects and work-
ing under conditions that require resistance to distracting
stimuli”, and finally Sensation Seeking reflects ‘‘a tendency
to enjoy and pursue activities that are exciting and an
openness to trying new experiences that may be
dangerous.”
3.4.2.5. Myers-Briggs Type Indicator (MBTI). The MBTI mea-
sures individual differences in personality as a function of
four constructs: extraversion/introversion, intuition/sensa-
tion, thinking/feeling, and judging/perceiving after Jung’s
(Jung, 1921/1971) theory of psychological types. The intu-
ition/sensation scale was administered for this study.
‘‘Intuitive” individuals are described as concentrating on
patterns and possibilities rather than concrete details,
whereas a ‘‘sensing” person is more concerned with details
and facts than an intuitive person. The Intuition scale was
scored as a continuous dimension ranging from low (sen-
sation) to high (intuition).
3.5. Missing values

In instances where we could reliably estimate missing
values, we did so using expectation–maximization based
on scores on other tests measuring the same construct.
Data from the other two markers of g were used to impute
17 missing Ravens values. For Speed-F, six participants did
not follow the directions correctly and their scores could
not be included in the analysis. Therefore, we used data
from the other two markers of processing speed (Speed-V
and Speed-N) to impute missing values on Speed-F.



Fig. 2. SRT learning performance for probable (SOC-85) and non-probable (SOC-15) trials across one practice and eight learning blocks (N = 153).
SOC = second-order conditional.
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4. Results

4.1. Validation

We first validated that implicit learning took place on
the probabilistic serial reaction time (SRT) learning task.
Fig. 2 shows learning on each block at the group level of
analysis, comparing mean RT for trials that followed the
most probable (85%) sequence with the mean RT for trials
that do not follow the most probable sequence (15%).

A repeated-measures analysis of variance (ANOVA)
with block (8) and type of trial (2, training vs. control)
was conducted on the measures of RT. The results showed
a significant effect of block, F(7, 1064) = 38.77; p < .0001
partial g2 = .20, and type of trial, F(1152) = 328.14;
p < .0001, partial g2 = 0.68, as well as a significant interac-
tion block � type of trial, F(7, 1064) = 19.88; p < .0001, par-
tial g2 = 0.12, indicating the acquisition of learning about
the training sequence. As is evident from an inspection of
Fig. 2, a change in the response trends seems to occur from
block 3 onwards, in which RT became slightly slower, but
the differences between responding to training and control
trials became larger. A comparison of the effect of learning
between the first two and the last six blocks of training
showed that the difference between responding to training
and control trials was significantly larger over the latter
blocks F(1, 152) = 233.51; p < .0001. Further, the average
Cohen’s d across the last six blocks was .19. We used this
average effect as the criterion for our scoring procedure
(see Section 3).

Hypothesis 1. Psychometric intelligence is correlated more
strongly with explicit associative learning than with impli-
cit learning and implicit learning is not related to working
memory, or explicit associative learning, but is related to
processing speed.
Table 1 includes all the correlations, descriptive statis-
tics, and reliabilities among all of the variables.

To investigate our first hypothesis, we looked at the
zero-order correlations between implicit learning, explicit
associative learning, and the three markers of psychomet-
ric intelligence. Among the three markers of psychometric
intelligence, implicit learning is significantly correlated
only with verbal reasoning, r = .22, p < .01. To assess impli-
cit learning’s relation to g and the elementary cognitive
task related to g, we constructed latent variables using
Amos 7.0 (Arbuckle, 2006), and then analyzed the associa-
tion among these latent variables and implicit learning.
Missing values were estimated by Amos using Maximum
Likelihood. A latent variable approach allows for more
accurate measurement of the constructs of interest.

The shared variance of Ravens, DAT-V, and MRT-A
formed the latent variable representing g. The shared var-
iance of Speed-V, Speed-F, and Speed-N formed the latent
variable representing Gs. The shared variance of Ospan tri-
als of set size two, three, four, five, and six formed the la-
tent variable representing WM. The shared variance of
blocks 2, 3, and 4 of the 3-Term test phases formed the la-
tent variable ‘‘3-Term,” and the shared variance of blocks 2,
3, and 4 of the PA test phases formed the latent variable
‘‘PA.” The latter two latent variables then served as mark-
ers for a latent AL variable, with the unstandardized paths
from the AL factor to both 3-Term and PA constrained to be
equal because two indicators do not provide enough infor-
mation to determine a unique solution for their loading
weights on a latent variable (Kline, 2005).
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Correlations among the latent variables and with IL
(which was an observed variable) appear in Table 2.
Table 2
Correlations among implicit learning and latent variables for g and
elementary cognitive tasks.

Measure 1 2 3 4 5

1. g –
2. Working memory .55** –
3. Processing speed .38** .19 –
4. Explicit learning .44** .17 .18* –
5. Implicit learning .16 .06 .24** .08 –

Note. N = 153.
* p < .05.
** p < .01.
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Fig. 3. explicit associative learning (E-AL), working memory (WM), processing
predict implicit learning (IL). N = 153. v2 = 189.13, df = 124, p < .05, CFI = .96, TL
model—arrows pointing to the left—are significant.) The latent predictors were
illustration. Key: PA = Paired-associates learning, 3-Term = Three-Term Conting
Speed-F = Figural speed test, Speed-N = Numerical speed test, Ravens = Raven’s
MRT = Mental rotations test.
Consistent with our second hypotheses, the only ele-
mentary cognitive task to which implicit learning is signif-
icantly related is processing speed. Implicit learning is
almost entirely uncorrelated with working memory and
explicit associative learning. Also in support of our hypoth-
eses, g is significantly more strongly correlated with expli-
cit associative learning than with implicit learning,
according to a test of equality of correlations (Steiger,
1980), t(150) = 2.78, p < .01).

The correlation between g and IL, however, approaches
significance (p = .08). To test whether this correlation is
due to implicit learning’s relation to verbal reasoning, we
tested a structural model in which g, all elementary cogni-
tive tasks, and verbal reasoning simultaneously predict im-
plicit learning (see Fig. 3).
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speed (Gs), psychometric intelligence (g), and verbal reasoning (DAT-V)
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allowed to correlate, but these correlations are not shown for clarity of
ency Learning, Ospan = Operation span task, Speed-V = Verbal speed test,

advanced progressive matrices test, DAT-V = DAT verbal reasoning test,



Table 3
Correlations between GCSE scores and g, elementary cognitive tasks, and
implicit learning.

Measure GCSE
Math

GCSE
English

GCSE
French

GCSE
German

g .44** .23* .22* .02
Working

memory
.26** .32** .35** .14

Processing
speed

.32** .33** .12 .28

Explicit
learning

.16 .20* .24* .16

Implicit
learning

.21* .15 .27** .29

N 145 145 102 42

Note. The N for the correlation between Gs and both Math and English is
144. GCSE English scores were calculated by taking the average of GCSE
English Language and GCSE English Literature scores. g was calculated by
assessing the common variance across Ravens, verbal reasoning, and
mental rotation using Principal Axis Factoring (N = 153). The first PAF
accounted for 67% of the total variance in the three tests. Working
memory was calculated by summing the Ospan scores for all set sizes.
Explicit associative learning was calculated by summing the 3-term and
PA learning scores. Processing speed was calculated by summing speed-F,
speed-N, and speed-F.
* p < .05.
** p < .01.

Table 4
Correlations between cognitive tasks, latent variables for Intellect and
Openness, and Intuition.

Measure Intellect Openness MBTI Intuition

1. g .55** .20 .22*

2. Working memory .35** .25* .20*

* **

S.B. Kaufman et al. / Cognition 116 (2010) 321–340 333
The model was analyzed using Amos 7.0 (Arbuckle,
2006) with maximum likelihood estimation. (The full
covariance matrix used to fit the model in Fig. 3 is available
from the authors on request.) When all the variables are
included together in a structural model, only Processing
Speed (Gs) and verbal reasoning (DAT-V) independently
predict implicit learning (IL). This suggests that g’s zero-or-
der correlation with implicit learning approaches signifi-
cance only because of verbal reasoning’s correlation with
implicit learning.2

Also listed in Fig. 3 is the v2 test for significant discrep-
ancies between the predicted and observed covariance
matrices, as well as the Comparative Fit Index (CFI), Tuck-
er–Lewis Index (TLI), and Root Mean Square Error of
Approximation (RMSEA). A significant v2 does not neces-
sarily indicate poor fit because the v2 value is sensitive
to sample size (Kline, 2005). Other fit indices are designed
to surmount this limitation. CFI and TLI values over .90
indicate adequate fit and values of .95 or higher indicate
close fit (Kline, 2005). RMSEA values less than 0.08 indicate
acceptable fit, while values of 0.05 or less indicate close fit
(Kline, 2005). The p(close) statistic indicates whether the
RMSEA value is significantly greater than 0.05. The fit indi-
ces reported in Fig. 3 reveal that the structural model pro-
vides a good fit to the data.

Hypothesis 2. Implicit learning is related to other measures
of cognition independently of psychometric intelligence
and the elementary cognitive tasks associated with psy-
chometric intelligence.

Using only those tests that displayed an adequate N for
analysis (>40), Table 3 shows the correlations of GCSE
Math, English, French, and German scores with g, elemen-
tary cognitive tasks, and implicit learning.

Implicit learning was significantly correlated with Math
and French scores. Although the correlation between im-
plicit learning and German scores was not significant, the
effect size (.29) is close to that for the relation between im-
plicit learning and French (.27), suggesting that with a lar-
ger sample size the correlation would reach significance.
Because g and some of the elementary cognitive tasks were
also related to these scores, we assessed the partial corre-
lation between implicit learning and the GCSE scores, con-
trolling for g, working memory, explicit associative
learning, and processing speed. After controlling for these
variables, the correlation between Math and implicit learn-
ing is no longer significant and the correlation between
English and implicit learning is still not significant, but
the correlation between implicit learning and French re-
mains significant (r = .27, p < .01, N = 102), and the correla-
tion between implicit learning and German increases to
reach significance (r = .35, p < .05, N = 42).

Hypothesis 3. Implicit learning is significantly associated
with self-reported Openness and the related trait of Intui-
tion but is not associated with Intellect.
2 As an even more stringent test of the association of IL with DAT-V
independently of g, we created a broader g variable by allowing the latent
E-AL, Gs, and WM variables to load on g (instead of merely correlating with
g). The results remained substantively the same, with DAT-V, but not g,
significantly predicting IL.
Whereas implicit learning was not related to any of the
three markers of Intellect (NEO Ideas, BFAS Intellect, REI
Rational Favorability), implicit learning was significantly
related to three markers of Openness to Experience (BFAS
Openness, NEO Aesthetics, and NEO Fantasy, see Table 1).
Consistent with this pattern is the fact that NEO Aesthetics
and NEO Fantasy were the two NEO facets that loaded
mostly highly on the factor from which the BFAS Openness
scale was derived (DeYoung et al., 2007).

Using latent variables for Openness (consisting of BFAS
Openness, NEO Aesthetics, NEO Fantasy, NEO Feelings, and
NEO Actions) and Intellect (consisting of NEO Ideas, BFAS
Intellect, and REI Rational Favorability), Openness was cor-
related with working memory, processing speed, and im-
plicit learning, and Intellect was associated with g,
working memory, processing speed, and explicit associa-
tive learning, but not implicit learning (see Table 4).

As a consequence of the significant relation of working
memory, processing speed, and implicit learning with the
latent Openness factor, we ran a structural model to assess
the independent effects of implicit learning on Openness,
controlling for the other cognitive variables. With g, work-
ing memory, explicit associative learning, processing
3. Processing speed .27 .30 .14
4. Explicit learning .30** .17 .00
5. Implicit learning .15 .30** .25**

Note. N = 153 (with estimation for missing values in AMOS).
* p < .05.
** p < .01.
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speed, and implicit learning simultaneously predicting
Openness, implicit learning (b = .23, p < .01) remained a
significant predictor of the BFAS Openness scale.

Table 4 also shows that g, working memory, and impli-
cit learning were significantly correlated with MBTI Intui-
tion. We therefore ran another structural model to assess
the independent effects of implicit learning on MBTI Intu-
ition, controlling for the other cognitive variables. With g,
working memory, explicit associative learning, processing
speed, and implicit learning entered simultaneously into
a regression model, implicit learning (b = .21, p < .05) re-
mained a significant predictor of the MBTI Intuition scale.

Hypothesis 4. There is a double dissociation, with Intellect
related to working memory and Openness related to impli-
cit learning.

The pattern of correlations seen in Table 3 suggest a
possible dissociation between Intellect and Openness, with
measures of g and elementary cognitive tasks associated
primarily with an intellectual cognitive style on the one
hand, and implicit learning independently associated with
openness to experience on the other hand. Openness was
associated with working memory at the zero order (Ta-
ble 3), but this might be due to the variance Openness
shares with Intellect, as a previous study did not find any
association between Openness and working memory
(DeYoung et al., 2009). Because previous studies have sug-
gested that working memory is a key cognitive correlate of
Intellect (DeYoung et al., 2005, 2009), we contrasted impli-
cit learning with working memory. To test the double dis-
sociation of Openness and Intellect with implicit learning
and working memory, we used structural equation model-
ing (see Fig. 4). The shared variance of NEO Actions, NEO
Aesthetics, NEO Fantasy, NEO Feelings, BFAS Openness,
and MBTI Intuition scales formed the latent variable
‘‘Openness”. The shared variance of the Openness to Ideas
.87 

.60 

.52 

.81 

.46 

.86 

.92 

.78 

 .43** 

.50 

Fig. 4. Double dissociation between Openness and Intellect in predicting worki
p < .05, CFI = .96, TLI = .94, RMSEA = .05, pclose = .50; **p < .01. All loadings of obser
Key: BFAS O. = BFAS Openness to Experience aspect, BFAS I. = BFAS Intellect aspe
task.
facet of the NEO, as well as the BFAS Intellect scale and
the REI rational favorability scale formed the latent vari-
able ‘‘Intellect”. The shared variance of Ospan trials of set
size two, three, four, five, and six formed the latent variable
‘‘WM”. While Openness significantly predicted implicit
learning, Intellect did not. Further, while Intellect signifi-
cantly predicted working memory, Openness did not.

Hypothesis 4. Impulsivity—particularly lack of premedita-
tion—is positively correlated with implicit learning.

Implicit learning was significantly correlated with a
lack of premeditation, r = .23, p < .01, suggesting that there
is a tendency for those with higher implicit learning scores
to deliberate less about decisions in their daily lives. Also,
the relation between implicit learning and sensation seek-
ing was marginally significant, r = .16, p = .05. Implicit
learning was not related to either urgency or perseverance.
Intellect was not related to premeditation, urgency, or sen-
sation seeking, but was positively correlated with perse-
verance, r = .24, p < .05, suggesting that those higher in
Intellect have more self-discipline in their daily lives.
Nonetheless, those scoring higher in Intellect do not have
higher implicit learning scores (see Table 4).

5. Discussion

The current study conceptualized implicit learning as
an ability and assessed the relation of individual
differences in implicit learning to psychometric intelli-
gence, elementary cognitive tasks commonly associated
with psychometric intelligence, and personality. Contrary
to the long-held assumption that individual differences in
implicit cognition are minimal relative to individual differ-
ences in explicit cognition (e.g., Reber, 1993; Stanovich,
2009), meaningful individual differences in implicit learn-
ing were observed. Although unrelated to g, intentional
.31**

.00 

 .13 

  .29**

WM 
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.72 

.76 

.71 

ng memory (WM) and implicit learning (IL). N = 153. v2 = 118.07, df = 86,
ved variables on latent factors in the measurement model are significant.
ct, REI Rat. F. = REI Rational Favorability subscale, Ospan = Operation span
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associative learning, and working memory, implicit learn-
ing was independently related to verbal analogical reason-
ing, processing speed, academic performance, and aspects
of self-reported personality. These results have important
implications for our understanding of human cognition in
general, as they are consistent with dual-process theories
of cognition (e.g., Evans & Frankish, 2009) and also suggest
independent systems of learning, each with their own
sources of individual differences. Below we discuss the
important implications of these findings more specifically
for the scientific investigation of intelligence, personality,
skill learning, complex cognition, and language acquisition.
5.1. Implicit learning, intelligence, and elementary cognitive
tasks

The current study found that individual differences in
implicit learning were not significantly related to a latent
cognitive ability factor indexing g. Intentional associative
learning was significantly related to g and also was signif-
icantly more strongly correlated with the three markers of
g than were individual differences in implicit learning.
These findings provide support for Reber’s (1989, 1993)
hypothesis that individual differences in explicit learning
are more related to psychometric intelligence than are
individual differences in implicit learning. They are consis-
tent with other empirical data (Gebauer & Mackintosh,
2007; McGeorge et al., 1997; Reber et al., 1991; Feldman
et al., 1995), and they are consistent with dual-process ac-
counts of thinking and reasoning (e.g., Evans & Frankish,
2009; Sloman, 1996).

The separation of implicit learning from working mem-
ory is consistent with prior reports by McGeorge et al.
(1997), Unsworth and Engle (2005a), and Feldman et al.
(1995). These studies also lend support to the idea that
the explicit and intelligent deployment of cognitive re-
sources in an implicit learning task may be important in
the initial stages of the task (in order to attend successfully
to the information). However, as long as attention is selec-
tively directed to the relevant stimuli (as in the task by
which we measured implicit learning), encoding and ac-
cess to the incidentally learned structure appears to be
no longer dependent on executive attentional resources
(Jiménez, 2003; Jiménez & Mendez, 1999; Turke-Browne
et al., 2005). It would be interesting for future research to
investigate conditions in which individual differences in
working memory are predictive of behavior compared to
conditions in which individual differences in implicit
learning are more predictive of behavior.

Implicit learning was also unrelated to intentional asso-
ciative learning. This suggests that intentional associative
learning may indeed operate through a different cognitive
pathway than implicit learning and further supports the
distinction between explicit and implicit associative learn-
ing. Mackintosh (1998) argued for the existence of a gen-
eral associative learning system that is largely
independent of a cognitive learning system. Since Mackin-
tosh was referring primarily to an implicit, automatic,
associative learning system, the current study provides
support for his distinction, but also suggests caution in
use of the term ‘‘associative.” One must distinguish be-
tween ‘‘explicit” and ‘‘implicit” associative processes.

Although implicit learning was unrelated to g, working
memory, and explicit associative learning, implicit learning
was significantly associated with processing speed and
scores on the verbal reasoning test. A link between implicit
learning and processing speed is consistent with prior re-
search (Salthouse et al., 1999) and suggests the possibility
that processing speed, like implicit learning, relies in part
on mechanisms that are phylogenetically older than the
explicit cognitive mechanisms most strongly related to g.
Future research should further investigate the nature of
the link between processing speed and implicit learning.
The significant correlation between implicit learning and
verbal reasoning scores is more surprising. It represents
an association between implicit learning and the residual
variance in verbal reasoning not attributable to psycho-
metric intelligence, which suggests that implicit learning
may contribute to a more specific language acquisition
ability.

The relation of implicit learning to language acquisition
is evidenced by the independent association of implicit
learning with educational attainment, in particular GCSE
French and German results. Educational attainment has
long been a yardstick for intelligence research to validate
its claim that IQ is related to real-world cognition (Mackin-
tosh, 1998). Moreover, this finding is convergent both with
the theoretical assertion that implicit learning is crucial to
language acquisition (e.g. Chang, 2008; Ellis, 1994; Karmil-
off-Smith, 1992; Perruchet, 2005; Perruchet, 2008; Winter
& Reber, 1994) and with empirical findings of an associa-
tion between measures of implicit learning and language
acquisition (e.g. Destrebecqz & Cleeremans, 2008; Gebauer
& Mackintosh, in preparation; Gomez, Gerken, & Schvane-
veldt, 2000; Krashen, 1992; Pacton, Fayol, & Perruchet,
2005; Pretz et al., 2010; Robinson, 2001; Rohrmeier & Fu,
2008). Further, consistent with the findings of Gebauer
and Mackintosh (in preparation), the relation between
SRT and second-language acquisition remained significant
after controlling for g, whereas the relation to Math scores
was no longer significant after controlling for g. These re-
sults suggest that a more complete understanding of lan-
guage acquisition and perhaps other aspects of cognition
could be had by further investigating individual differences
in implicit learning.

The results of the current study have implications for
intelligence research. Intelligence researchers in the psy-
chometric tradition have predominantly focused on con-
trolled, deliberate reasoning as the hallmark of
intelligence (Chabris, 2006; Jensen, 1998; Spearman,
1927). Various researchers have posited additional ‘intelli-
gences’ (e.g., Gardner, 1993; Sternberg, 1997), which have
been criticized on the grounds either that these so-called
‘intelligences’ are poorly defined and/or measured or that
they are not in fact separate intelligences because they
are significantly g-loaded (Gottfredson, 2003; Visser, Ash-
ton, & Vernon, 2006).

Implicit learning may be related to tacit knowledge,
which forms the theoretical core of what Sternberg calls
practical intelligence (Wagner & Sternberg, 1986; Stern-
berg et al., 2000). As Mackintosh (1998) has pointed out,
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there are striking similarities between Reber’s (1989,
1993) description of implicit learning and Wagner and
Sternberg’s (1986, p. 54) description of tacit knowledge
as knowledge that is ‘‘not openly expressed or stated. . .not
directly taught. . .” Indeed, as suggested by Reber (1989),
tacit knowledge and intuitive feelings may be the result
of an implicit learning experience. It should be noted, how-
ever, that in Wagner and Sternberg’s conceptualization, ta-
cit knowledge can be either conscious or nonconscious.
Furthermore, an analysis of a battery of practical intelli-
gence tests demonstrated that they were, in fact, signifi-
cantly related to g (Cianciolo et al., 2006). Implicit
learning ability may come closer to operationalizing the
idea of tacit knowledge than any of the ‘‘practical intelli-
gence” tests that have been devised, as it seems to be at
most only very weakly related to g.

5.2. Implicit learning and personality

The current study found that implicit learning was sig-
nificantly related to the common variance across various
self-report measures of the Openness aspect of the Big Five
domain Openness/Intellect, as well as to the closely related
measure of MBTI Intuition (the latter finding being consis-
tent with results reported by Woolhouse & Bayne, 2000).
Implicit learning was not related to the Intellect aspect of
the domain, however. Although the causal direction is un-
clear, these findings do raise the possibility that better
unconscious detection and learning of covariance struc-
tures may be one of the cognitive mechanisms that support
the trait of Openness, as distinct from Intellect. The
engagement with the perceptual world that characterizes
Openness may be facilitated by implicit learning. Of course,
it is also possible that those high in Openness are better at
implicit learning because they have a wider focus of atten-
tion. Future research could investigate the causal relation
between implicit learning and Openness to Experience.

To the best of our knowledge, few other studies have
examined the relation between Openness and implicit
learning. Norman, Price, and Duff (2006) administered a
deterministic SRT task (as opposed to the probabilistic ver-
sion, like ours, which is thought to be a cleaner measure of
implicit learning since it leads to less explicit knowledge of
the sequence) and found a significant correlation between
Openness to Feelings and the amount of decrease in RT
throughout the training blocks, but did not find a correla-
tion between Openness to Feelings and sequence learning
scores, which were taken as the difference between RT to
a sequential block and to a control block in which the
training sequence was removed. Similarly, Norman, Price,
Duff, and Mentzoni (2007) administered a probabilistic
SRT task but still found no significant correlation between
Openness to Feelings and learning scores. It should be
noted that the current study also did not find a zero-order
correlation between the NEO Openness to Feelings facet
and SRT learning. Indeed, SRT learning was more related
to Openness to Aesthetics, Openness to Fantasy, and a pref-
erence for imagination, patterns, possibility, and beauty, as
measured by the MBTI Intuition and BFAS Openness scales.
Therefore, it might be argued that the core component of
Openness that is related to individual differences in impli-
cit learning is not openness to affective information, but an
openness to the experience of aesthetics, patterns, and
possibilities. Consistent with this idea, Pretz and Totz
(2007) have argued that the MBTI Intuition scale has less
to do with affective intuition, and is uniquely related to
the holistic nature of intuition.

The current study also found a significant correlation
between implicit learning and lack of deliberation. These
results suggest that those who deliberate less may be more
open to implicit learning since their selective attention will
focus on a wider variety of stimuli, and thus be more likely
to capture relevant associations. This idea is consistent
with the reflective-impulsive model of Strack and Deutsch
(2004), in which the reflective system is tied to explicit
cognition whereas the impulsive system is related to the
implicit system. Of course, it is also possible that good im-
plicit learners naturally deliberate less because they have
more confidence in the implicit learning domain. Future
research should attempt to investigate the relation be-
tween impulsivity and implicit processing more thor-
oughly in order to determine the causal direction of the
association.

5.3. Broader implications and limitations

The findings of the current study have implications for
Reber’s (1993) evolutionary theory of implicit learning,
which predicts that because implicit learning ability is
‘evolutionarily old’, implicit processes should display tigh-
ter distributions and fewer individual differences in the
general population than more ‘evolutionarily recent’ con-
scious processes. Although it may be the case that there
is lower variability amongst humans in implicit learning
than explicit learning, the current study suggests that
individual differences in implicit learning are nonethe-
less meaningfully related to complex cognition and to per-
sonality. These individual differences deserve further
study.

The results of the current study additionally have impli-
cations for skill acquisition research. Most theories of skill
acquisition posit that the initial stages of learning draw
strongly on explicit processes and general intelligence,
which only later become automated and implicit (Acker-
man, 1988; Anderson, 1993; Guttman, 1954; Marshalek,
Lohman, & Snow, 1983). Our results suggest that the learn-
ing of a skill does not necessarily depend on deliberate pro-
cessing in the initial stages. During interviews, none of the
participants in the current study were able to articulate the
underlying covariances in the implicit learning task, and a
tendency for lack of deliberation was correlated with im-
plicit learning, suggesting that they were building their ta-
cit knowledge without deliberately trying to do so.

A limitation of the current study is that the split-half
reliability of our implicit learning task was not high, even
with our improved scoring method, suggesting that the
assessment of individual differences in implicit learning
was noisier than would be optimal. However, the level of
reliability was standard for measures of implicit learning
(Reber et al., 1991; Dienes, 1992). One might be concerned
that the null results for correlation of implicit learning
with psychometric intelligence and other explicit cognitive
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variables might simply reflect low reliability. However,
other variables did show positive correlations with implicit
learning, as hypothesized, and these effects were in the
middle third of effect sizes reported in psychology (r = .2
to .3; Hemphill, 2003). We therefore conclude support for
the hypothesis that implicit learning is either unrelated
or only weakly related to individual differences in explicit
cognition. Nonetheless, future studies should investigate
ways to increase the reliability of assessment for implicit
learning.

Another limitation of the current investigation was that
it involved only one implicit learning task. We focused on
the probabilistic version of the SRT because we believe it
to be the best available measure of implicit learning (see
Section 3). Since the sequential trials are continuously
intermixed with a proportion of non-sequential trials, this
probabilistic nature of the task makes it especially well sui-
ted to capture implicit learning effects (Jiménez & Vázquez,
2005; Schvaneveldt & Gómez, 1998), leading to less expli-
cit knowledge. Interviews conducted after the experiment
supported this notion—participants could not explicitly
reproduce the sequential pattern. Nonetheless, conclusions
about the associations between implicit learning and other
constructs would gain strength if future research included
both subjective (e.g., interviews) and objective (e.g., recog-
nition or generation task performance) indices of explicit
knowledge of the task.

Further, associations between implicit learning and
other constructs would gain additional plausibility if they
could be replicated using multiple implicit learning tasks
and a latent implicit learning variable. Currently, our re-
sults cannot necessarily be generalized to other implicit
learning paradigms. In order to strengthen the status of
implicit learning as an independent ability, it will be neces-
sary to show that other measures of implicit learning are
not strongly related to g, and independently predict other
important outcomes (Carroll, 1993). Although prior re-
search has shown that various implicit learning paradigms
do not correlate well with each other (Gebauer & Mackin-
tosh, 2007, in preparation; Pretz et al., 2010; Salthouse
et al., 1999), recent work by Gebauer and Mackintosh (in
preparation) suggests that if enough implicit learning tasks
are administered, a distinguishable factor, at least at the
second order, does emerge.

Complicating the picture is the fact that implicit learn-
ing paradigms differ in the ratio of explicit to implicit pro-
cesses required for successful performance on the tasks
(Seger, 1994). Future research should administer a variety
of implicit learning tasks which vary the extent to which
explicit encoding during the learning phase is required.
Researchers may have to construct new implicit learning
tasks that minimize the effects of explicit learning in order
for an implicit latent factor to emerge consistently. Addi-
tionally, Seger (1994) proposed the existence of both mo-
tor- and judgment-based forms of implicit learning. Some
of the results of the current study may pertain only to mo-
tor-based implicit learning. The extent to which the cur-
rent study’s findings are generalizable to other forms of
implicit learning remains an open question, as does the full
range of implicit learning paradigms that evince meaning-
ful individual differences.
A final issue is the extent to which performance on the
SRT may reflect individual differences in something other
than implicit learning. The SRT involves the learning of
complex covariances not immediately transparent to the
learner, and not relevant to the explicit goals of the task.
Although we can be confident that individuals who re-
spond faster to high- than to low-probable events have
implicitly learned something about relative probabilities,
we cannot rule out the possibility that those who show lit-
tle or no difference in speed have learned something sim-
ilar, but without this knowledge subsequently influencing
their behavior. Therefore, the extent to which performance
on the SRT is associated with individual differences in the
ability to learn the covariances, individual differences in
attentional focus (Jiménez, 2003; Shanks, 2003), or individ-
ual differences in cognitive style or personality (Kassin &
Reber, 1979; Sternberg, 1997; Wolke & DuCette, 1974;
Woolhouse & Bayne, 2000) remains uncertain. In other
words, it is not yet clear at what stage of the implicit learn-
ing process individual differences are most salient—is it be-
fore the relevant stimuli receive selective attention or
after, or is it even after associations have been learned
but before they are expressed in behavior?

The answer to this question would have implications for
Reber’s (1993) evolutionary theory of implicit learning. It
may indeed be the case that there is low variability
amongst humans concerning the ability to acquire the rule
structure of the environment, but that where humans vary
is in other aspects of the process, such as the way in which
they distribute the focus of their attention. Even with these
limitations, we nonetheless see the investigation of indi-
vidual differences in implicit cognition as a long neglected,
but potentially fruitful, line of research.
6. Conclusion

Implicit learning can be assessed as an ability with indi-
vidual differences that are meaningfully related to other
important variables in individual differences research. Im-
plicit learning ability was related to Openness to Experi-
ence and the associated construct, intuition, and to the
tendency to make decisions without premeditation. Impli-
cit learning ability was not related to psychometric intelli-
gence, working memory, explicit associative learning, or
self-rated Intellect. The pattern of variables that are and
are not related to implicit learning is suggestive of conclu-
sions about the structure of human information process-
ing, consistent with the idea that there are two relatively
independent systems by which individuals analyze and
learn about regularities in their experience. Further, these
results suggest that the investigation of individual differ-
ences in implicit cognition can increase our understanding
of human intelligence, personality, skill acquisition, and
language acquisition specifically, as well as human com-
plex cognition more generally.
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