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Recent evidence suggests the existence of multiple cognitive mechanisms that support the
general cognitive ability factor (g). Working memory and processing speed are the two best
established candidate mechanisms. Relatively little attention has been given to the possibility
that associative learning is an additional mechanism contributing to g. The present study tested
the hypothesis that associative learning ability, as assessed by psychometrically sound
associative learning tasks, would predict variance in g above and beyond the variance
predicted byworkingmemory capacity and processing speed. This hypothesis was confirmed in
a sample of 169 adolescents, using structural equation modeling. Associative learning, working
memory, and processing speed all contributed significant unique variance to g, indicating not
only that multiple elementary cognitive processes underlie intelligence, but also the novel
finding that associative learning is one such process.
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1. Introduction

Over a century ago, Spearman (1904) discovered that
when a battery of diverse cognitive tests is administered to a
diverse group of people, there is consistent tendency for all
the tests to be positively correlated with one another,
producing what has been referred to as the “positive
manifold”. Many studies since then have replicated this
finding (Carroll, 1993; Jensen, 1998; Johnson, Bouchard,
Krueger, McGue, & Gottesman, 2004). Although the existence
of general intelligence (g), in the sense of a statistical feature
(a “positive manifold”), is a robust finding, it is less clear what
the mechanisms are that support g. The best established
candidate processes, as mechanistic substrates of g, are
processing speed (Deary, 2001) and working memory (Con-
way, Jarrold, Kane, Miyake, & Towse, 2007). It remains

important to discover other processes that might similarly
contribute to intelligence.

The current study investigated associative learning as a
potential additional candidate process, which might contri-
bute to g over and above processing speed and working
memory. Only recently has associative learning become a
serious contender as a substrate of g (Alexander & Smales,
1997; Tamez, Myerson, & Hale, 2008; Williams, Myerson, &
Hale, 2008; Williams & Pearlberg, 2006). There is good
reason, however, to suspect that the ability to learn associa-
tions might support g. Intelligent behavior seems certain to
require memory for patterns of associations among stimuli,
and one of the original purposes of intelligence tests was to
assess students' ability to learn (Binet & Simon, 1916).
Relations among associative learning, general cognitive
ability, and cognitive mechanisms that subserve general
cognitive ability are thus of interest for both theoretical and
historical reasons.

In the present study, we are considering associative
learning as the ability to remember and voluntarily recall
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specific associations between stimuli. Although early studies
found a weak or no relation between associative learning and
general cognitive ability (Malmi, Underwood, & Carroll, 1979;
Underwood, Boruch, & Malmi, 1978; Woodrow, 1938, 1946),
the failure to find a relation seems likely to be due to the fact
that the associative learning tests that were used in these
studies were easy and thus unlikely to be related to complex
cognition (Estes, 1970). Consistent with this hypothesis, a
more difficult associative learning task, inwhich subjectswere
required to learn multiple response–outcome contingencies
for each trial, appears to be more strongly associated with g
than a simpler associative learning task involving associations
between pairs of stimuli (Williams & Pearlberg, 2006).

To be confident that associative learning is indeed a
substrate of g, it is important to demonstrate that individual
differences in associative learning make a contribution to the
prediction of g that is statistically independent of the
contributions of other candidate mechanisms. Otherwise, it
might be the case that associative learning showed zero-order
correlations with g merely because of its relation to some
other important mechanism, such as working memory or
processing speed. To the extent that g relies on multiple
separable processes that are at least partially independent of
one another, each should provide some incremental con-
tribution to g. By examining the incremental validity of
elementary cognitive tasks (ECTs, Jensen, 1998) that tap
candidate cognitive mechanisms, one can effectively address
the question of whether associative learning provides incre-
mental prediction of g above and beyond two of themost well
studied ECTs, working memory and processing speed tests.

Working memory is the ability to maintain, update, and
manipulate information in an active state, over short delays
(in the range of seconds rather than minutes). Individuals
differ in their working memory, and those with higher
working memory are better able to control their attention
so as to maintain their task goals in the presence of
interference (Conway, Cowan, & Bunting, 2001; Kane,
Bleckley, Conway, & Engle, 2001; Unsworth, Schrock, &
Engle, 2004). Working memory is strongly correlated with g
(Conway et al., 2007; Engle & Kane, 2004; Heitz, Unsworth, &
Engle, 2004). There is convincing evidence for a mechanistic
link between working memory and g: tasks assessing g and
working memory engage shared neural substrates, in lateral
prefrontal cortex (PFC) as well as left and right parietal
regions (Gray, Chabris, & Braver, 2003; Gray & Thompson,
2004). At least one additional cognitive mechanism has been
identified that is very strongly related to g, namely processing
speed.

Processing speed involves the speed at which even simple
operations can be performed. Higher-IQ subjects respond
faster in simple and choice reaction time paradigms (Deary,
Der, & Ford, 2001) and are faster at perceiving a difference
between two similar line segments in experiments on
inspection time (Deary, 2000; Grudnik & Kranzler, 2001). In
the Horn–Cattell theory of intelligence (Horn & Cattell, 1966),
processing speed was described as “perceptual speed” (Gs),
and, in Caroll's three-stratum theory of intelligence, as
“general speediness” (Carroll, 1993). Finally, analysis of the
factor structure of subtests from the WAIS (the standard IQ
test) has demonstrated that processing speed is one of four
second level factors below g (Deary, 2001).

The strong link between processing speed and g has led
some researchers to argue that differences in g are primarily a
result of differences in overall efficiency and speed of the
nervous system (Anderson, 1992; Jensen, 1998). Others have
criticized this view, on the grounds that performance on tests
of processing speedmay be a function of vigilance or ability to
avoid distraction, rather than mere neural efficiency (Mack-
intosh, 1998). In any case, it seems unlikely that processing
speed is the central mechanism underlying intelligence
because measures of processing speed (Gs) tend to load less
strongly on g than other cognitive tests (Deary, 2001).

The possibility remains open that working memory and
processing speed make separable, statistically independent
contributions to g. Processing speed accounts for the link
between working memory and g in some studies (Fry & Hale,
1996; Jensen, 1998; Kail & Salthouse, 1994; Salthouse, 1996),
while others have found that working memory is the primary
predictor of g, even while controlling for processing speed
(Carpenter, Just, & Shell, 1990; Conway, Cowan, Bunting,
Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, &
Conway, 1999; Kyllonen, 1996; Kyllonen & Christal, 1990).
Conway et al. (2002) argue that these conflicting conclusions
result from the use of processing speed tasks with different
levels of working memory demand. At any rate, it is generally
agreed that working memory is not identical to g (Ackerman,
Beier, & Boyle, 2005; Kane, Hambrick, & Conway, 2005;
Oberauer, Schulze, Wilhelm, & Süß, 2005), leaving room for
other processes to contribute additionally to g.

Associative learning and working memory correlate at the
behavioural level of analysis (DeYoung, Peterson, & Higgins,
2005), and both appear to engage the PFC. However, working
memory typically recruits dorsolateral areas of the PFC in
Brodmann areas 9 and 46 (Petrides, 1995, 2000), whereas
associative learning engages adjacent, more posterior frontal
regions, in Brodmann areas 6 and 8 (Petrides, Alivisatos,
Evans, & Meyer, 1993). The fact that the neural correlates of
associative learning and working memory appear to be
separable suggests that the two processes might make
distinct contributions to intelligence. In support of this idea,
a recent study found that learning of three-term contingen-
cies predicted performance on Ravens Advanced Progressive
Matrices (RAPM), a good measure of g, above and beyond
working memory (Tamez et al., 2008). Further, once the
variance between learning and g was accounted for, working
memory no longer made a unique contribution to g. A
limitation of this study, as well as that ofWilliams & Pearlberg
(2006), is the analysis of single observed measures of g and
learning rather than latent variables that model the shared
variance of relevant tests and exclude error and unique
method variance. Williams and Pearlberg (2006) found a
more complex measure of learning to predict gmore strongly
than a simpler one, but the variance shared by both tasks may
provide a better assessment of learning than either task alone.
The current study was designed to overcome this limitation.

1.1. The present study

We administered the two associative learning tasks used
by Williams and Pearlberg, (2006). Having examined these
tasks individually, we proceeded to investigate associative
learning as a latent construct by modeling their shared
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variance. We used structural equation modeling to test the
hypothesis that associative learning would predict g while
controlling for working memory and processing speed.
Support for this hypothesis would demonstrate that associa-
tive learning is a promising candidate as an elementary
cognitive process contributing to g, separable from two of the
best-established ECTs, working memory and processing
speed.

2. Method

2.1. Participants

The 169 participants (54 males and 115 females) included
in the analysis were aged 16–18 years, and attended a
selective Sixth Form College (which takes high-achieving
students who are in their last 2 years of secondary education)
in Cambridge, England. Data were collected for 12 more
participants, but 2 were removed from the analysis because
their RAPM scores were below chance, 1 participant was
removed due to obvious lack of effort (frequent chatting), and
9 other participants were removed because they failed to
complete all tasks that were markers for one or more of the
latent variables.

2.2. Procedure

Tests were administered in groups at PC desktop terminals
during the course of three 1.5-h sessions. Whenever possible,
all participants received all tests in the same order. Each
participant earned £20 for their participation in all three
testing sessions.

2.3. Associative learning tasks

2.3.1. Three-term contingency learning (Williams & Pearlberg,
2006)

The Three-Term Contingency Learning (3-Term) task
consists of four learning blocks, each followed immediately
by a test block. In each learning block, participants were
presented with 10 unique words. Each word was associated
with three different words, contingent on a key press. The
participants' task was to learn the word associated with each
stimulus–response pair. For instance, on one trial the word
“LAB” might show on the screen with the letters “A”, “B”, and
“C” listed underneath. When participants selected “A”, they
saw one association (e.g., PUN), when they selected “B”, they
saw a second association (e.g., TRY), and when they selected
“C” they saw a third association (e.g., EGG). The duration of
exposure to each association was self-paced (max 2.5 s) with
changeover intervals set at 0.2 s. After the single presentation
of all ten stimulus wordswith the 30 outcomewords, subjects
were immediately presented with a test block.

The test blocks were identical to the learning blocks with
one exception: instead of typing the letters “A”, “B”, or “C” to
produce the outcome words on the screen, a stimulus word
appeared on the screen along with one of “A”, “B”, or “C”, and
participants were required to type in the outcome word
corresponding to that stimulus–response pair. Together with
feedback on their answer, the correct association was shown
to the participants until they pressed “ENTER”, when the next

stimulus word was presented. Once the test block was
completed, participants immediately moved to a second
learning block in which the same stimulus words were
presented in a different order. Across the four test blocks,
possible overall scores ranged from 0 to 120.

2.3.2. Paired–associates (PA) learning (Williams & Pearlberg,
2006)

In this task, participants were presented with 30 pairs of
words. A cue word was presented until the participant
pressed ENTER, or until 2.5 s elapsed, after which the cue's
pair appeared on the screen. They then remained together on
screen, again until the participant pressed ENTER, or until
2.5 s elapsed, after which both disappeared and the next cue
word was displayed. The test phase was identical to training,
except instead of pressing “ENTER” to view the second word
of each pair, subjects were required to type that word.
Together with feedback on their answer, the correct associa-
tionwas shown to the participant until they pressed “ENTER”,
when the next word cue was presented. Once the test phase
was completed, participants immediately moved to a second
learning block in which the same stimulus words were
presented in a different order. In total, there were four
learning and four test blocks, with possible overall scores
ranging from 0 to 120.

2.4. General cognitive ability tests

To create a good latent g factor we used one verbal test,
one perceptual reasoning test, and one mental rotation test.
Using one of the largest batteries of cognitive tests ever
collected, Johnson and Bouchard (2005) demonstrated that,
below the g factor, there are three separable second-stratum
domains of cognitive ability: verbal, perceptual, and mental
rotation. Use of one test from each domain should produce a
well balanced g.

2.4.1. Raven's advanced progressive matrices test, set II (RAPM)
The RAPM (Raven, Raven, & Court, 1998) is a measure of

abstract perceptual reasoning. Each item consists of a 3×3
matrix of geometric patterns with the bottom right pattern
missing. The participants' task is to select the option that
correctly completes the matrix. There are eight alternative
answers for each item. The test is presented in increasing
order of difficulty. After two practice items with feedback,
participants were then given 45 min to complete 36 items.

2.4.2. DAT verbal reasoning test
The verbal reasoning section of the Differential Aptitudes

Test (DAT-V, The Psychological Corporation, 1995) was
administered to each participant. Each problem consisted of
a sentence with two words missing, and participants chose a
pair of words from the answer options that were related to
the words in the sentence in some way. After two practice
items, participants had 15 min to complete 40 problems.

2.4.3. Mental rotations test, set A (MRT-A)
The MRT-A (Vandenberg & Kruse, 1978) contains 24

problems and measures mental rotation ability, which
appears to be a distinct component of intelligence at the
same level as verbal ability and perceptual ability (Johnson &
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Bouchard, 2005). Each problem in the MRT-A shows a three-
dimensional target figure paired with four choice figures, two
of which are rotated versions of the target figure. To score a
point, both rotated versions must be identified. After two
practice items with feedback and an explanation, the first 12
problems were attempted in 4 min with a 2 min break before
attempting the second 12 in another 4 min. The maximum
score is 24.

Mean scores on the three cognitive ability measures
(RAPM, DAT-V, and MRT-A) suggested a mean IQ for the
entire sample in the range of 100 to 110.

2.5. Processing speed tests

2.5.1. Verbal speed test (Speed-V)
An English adaptation of a sub-test from the Berlin model

of Intelligence Structure (BIS; Jaeger, 1982, 1984). The task
was to fill in the missing letter from a 7-letter word; 60 s were
given to complete the 57 items. The score is the number
completed correctly in 60 s.

2.5.2. Numerical speed test (Speed-N)
The Speed of Information Processing sub-test from the

British Ability Scales (Elliot, 1996). The task was to cross out
the highest number in each row of five numbers; 60 s were
given to complete 48 items. The score is the number
completed correctly in 60 s.

2.5.3. Figural speed test (Speed-F)
Digit-Symbol, Coding, a sub-test of the WAIS-R that loads

on the “processing speed” factor (Deary, 2001). The test was
to enter the appropriate symbol (given by a key at the top of
the form) beneath a random series of digits; 90 s were given
to complete 93 items. The score is the number completed
correctly in 90 s.

2.6. Working memory

2.6.1. Operation span task (Turner & Engle, 1989)
The Operation Span (Ospan) task requires participants to

store a series of unrelated words in memory while simulta-
neously solving a series of simple math operations, such as “Is
(9/3)−1=1?”. After participants selected the answer, they
were presented with a word (e.g., DOG) to recall. Then
participants moved on to the next operation–word string.
This procedure was repeated until the end of a set, which
varied from two to six items in length. Participants were then
prompted to recall all the words from the past set in the same
order in which they were presented by typing each word into
a box, and using the up and down arrow keys on the keyboard
to cycle through the boxes.

Before the main task, participants encountered three
practice problems with set size two, where they received
feedback about their performance. During these practice
trials, we calculated for each participant how long it took
them to solve the math operations. Consistent with the
methodology of the Automated Ospan task (Unsworth, Heitz,
Schrock, & Engle, 2005), we did this to control for individual
differences in the time required to solve the math operations.
Their mean performance time to solve the equations, plus

2.5 SD was used as the time limit for the presentation of the
math equations during the main task.

The Ospan score is the sum of all correctly recalled words
in their correct positions. The number of operationword-pairs
in a set was varied between two, three, four, five, and six with
three sets of each. Overall score could range from 0 to 60. Prior
research has demonstrated significant correlations between
Operation Span and g (e.g., Unsworth & Engle, 2005a) and a
high loading of Operation Span on a general workingmemory
factor (Kane et al., 2004).

2.7. Missing values

Some participants were missing values for certain vari-
ables, which we estimated using expectation–maximization
based on the other markers of the relevant latent construct.
Due to computer error, values were missing for 13 partici-
pants for one of the three markers of g. Data from the other
two markers of g were used to impute 11 missing RAPM
values, 1 missing DAT-V value, and 1 MRT-A value. For Speed-
F, 10 participants did not follow the directions correctly and
their scores could not be included in the analysis. Therefore,
we used data from the other two markers of processing speed
(Speed-V and Speed-N) to impute 10 missing values on
Speed-F. Finally, due to a computer error, performance on the
last trial of PAwas not recorded for one participant. Since this
participant achieved a maximum score on the third trial, we
estimated that performance on the last trial was also a perfect
score.

3. Results

3.1. Psychometric properties of the associative learning tasks

Table 1 shows the descriptive statistics for each trial of
learning on both PA and 3-Term. The first block of learning on
3-Term had both an exceptionally low mean of 3.19 out of 30
correct and a standard deviation about half that of the other
three learning trials. Similarly, the first block of learning on PA
displayed a mean of 11.85 out of 30 correct, also low
compared to performance on the other three blocks of
learning on PA. Even so, performance on the first block of
PA is significantly higher than performance on the first block
of 3-Term [t(168)=−19.11, pb .001], suggesting a faster
acquisition function and lower difficulty of the PA task
relative to 3-Term.

To investigate the relation between g and each block of
learning, we calculated each participant's g score by assessing

Table 1
Descriptive statistics for learning trials on 3-Term and PA (N=169).

Mean S.D. Min Max Correlation with g

3-Term trial 1 3.28 3.50 0 21 .19*
3-Term trial 2 9.27 6.61 0 30 .34**
3-Term trial 3 14.62 7.91 0 30 .33**
3-Term trial 4 18.82 8.17 0 30 .33*
PA trial 1 11.85 6.65 1 28 .19*
PA trial 2 20.54 7.36 2 30 .29**
PA trial 3 24.08 6.73 2 30 .27**
PA trial 4 25.79 5.85 5 30 .29**

*pb .05; **pb .01.
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the common variance across RAPM, DAT-V, and MRT-A using
Principal Axis Factoring. Performance on the four blocks of
each learning task and the relation of g to performance across
blocks was analyzed using a repeated measure GLM. For both
the 3-Term and PA learning tasks, therewas a significant main
effect for block [3Term: F(3,165)=277.56, pb .001; PA: F
(3,165)=370.45, pb .001] and a significant g×block interac-
tion [3Term: F(3,165)=7.21, pb .001; PA: F(3,165)=2.88,
pb .05]. This interaction indicates that for both learning tasks,
g is more strongly associated with some learning blocks than
others. Table 1 shows the correlation between g and each
block of learning on both PA and 3-Term. The correlation of
each block of learning with g stabilizes after the first block of
learning, suggesting that the first block of learning for both
measures of associative learning may be too difficult for
reliable individual differences to emerge. For this reason,
further analyses will exclude the first block on both 3-Term
and PA.

3.2. Associative learning and g

Cronbach's alphawas used to estimate the reliability of the
two associative learning tasks. For both measures of associa-
tive learning, reliability was calculated across blocks 2, 3, and
4. Both 3-Term (α=.93) and PA (α=.95) showed high
reliability. The correlation matrix for scores on observed
variables appears in Table 2, with descriptive statistics for
each test. The correlation between the total scores on 3-Term
and PA was significant and high, suggesting that the two
measures were engaging the same ability, or at least similar
processes. It is also noteworthy that 3-Term and PAwere both
significantly correlated with RAPM.

To test predictions about the independent prediction of g
by associative learning (AL), working memory (WM), and
processing speed (Gs), we used structural equationmodeling.
The model was analyzed using Amos 7.0 (Arbuckle, 2006)
with maximum likelihood estimation. (Appendix A includes
the full covariance matrix used to fit the model in Fig. 1).

The shared variance of blocks 2, 3, and 4 of the 3-Term test
phases formed the latent variable “3-Term,” and the shared
variance of blocks 2, 3, and 4 of the PA test phases formed the
latent variable “PA.” These two latent variables then formed
the latent AL variable.

The shared variance across Ospan trials of set size two,
three, four, five, and six formed the latent variable represent-
ing WM. The shared variance across Speed-V, Speed-F, and
Speed-N formed the latent variable representing Gs. The
shared variance across RAPM, DAT-V, and MRT-A formed the
latent variable representing g.

Prior to fitting the structural model predicting g (Fig. 1),
we fit a model simply allowing the predictor variables to
correlate with each other and with g, in order to assess their
zero-order associations. The fit of this model was almost
identical to that in Fig. 1. Correlations among the latent
variables appear in Table 3. AL, WM, and Gs are significantly
correlated with g. Although correlations are not shown in
Fig. 1, all predictors of g were allowed to correlate with each
other.

In the model shown in Fig. 1, AL, WM, and Gs all make
significant independent contributions to g. The model
accounts for 40% of the total variance in g. Also listed in
Fig. 1 is the χ2 test for significant discrepancies between the
predicted and observed covariance matrices, as well as the
Comparative Fit Index (CFI), Tucker-Lewis Index (TLI), and
Root Mean Square Error of Approximation (RMSEA). A
significant χ2 does not necessarily indicate poor fit because
the χ2 value is sensitive to sample size (Kline, 2005). Other fit
indices are designed to surmount this limitation. CFI and TLI
values over .90 indicate adequate fit and values of .95 or
higher indicate close fit (Kline, 2005). RMSEA values less than
0.08 indicate acceptable fit, while values of 0.05 or less
indicate close fit (Kline, 2005). The p(close) statistic indicates
whether the RMSEA value is significantly greater than 0.05.
The fit indices reported in Fig. 1 reveal that the structural
model provides a good fit to the data.

4. Discussion

The main aim of the study was to investigate the
contribution of associative learning to g, above and beyond
working memory and processing speed. In line with this goal,
we first examined the psychometric properties of two
associative learning tasks — three-term contingency learning
and paired-associates learning. Analyses indicated that 3-
Termwas a more difficult task than PA overall, but both tasks
demonstrated a relatively low score on the first block of

Table 2
Correlations, means, and standard deviations of observed variables (N=169).

Measure 1 2 3 4 5 6 7 8 9

1. RAPM (/36) –

2. DAT-V (/40) .53** –

3. MRT-A (/24) .59** .43** –

4. Ospan (/24) .30** .42** .24** –

5. Speed-V (/57) .17** .24** .14 .22** –

6. Speed-F (/90) .24** .15* .17* .15 .24** –

7. Speed-N (/48) .25** .10 .21** .10 .14 .51** –

8. 3-Term (/90) .32** .35** .21** .21** .09 .16* .02 –

9. PA (/90) .31** .23** .14 .14 .17* .17* −.05 .64** –

Mean 21.72 24.52 13.21 44.53 41.36 64.70 30.90 42.70 70.42
S.D. 5.53 5.86 5.34 7.61 9.05 10.50 4.19 21.37 19.15
Reliability .81 .78 .85 .73 .60 ,60 .60 .93 .95

Notes: All reliability analyses are alpha coefficients, except for the three processing speed tests, in which the Spearman–Brown split-half coefficient was calculated
across all three tests. The parenthetical next to each test refers to the total score for each test.
*pb .05, **pb .01.
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learning. Further, while g was significantly associated with
learning on each block, correlations with g changed signifi-
cantly over the four blocks, becoming stronger on blocks 2, 3,
and 4 for both 3-Term and PA. We therefore excluded the first
block of learning from both measures of associative learning
from our structural analysis. Any study that assesses the
relation between associative learning and gmust consider the
psychometric properties of the tasks, to ensure that they are
good measures of individual differences.

Structural equation modeling showed that associative
learning, working memory, and processing speed all made
statistically independent contributions to g. This finding
suggests that each of these elementary cognitive processes
may represent a mechanism that contributes differentially to
general intelligence. The current study is consistent with

three recent studies that have demonstrated a link between
associative learning and g. Firstly, Williams and Pearlberg
(2006), found that 3-Term learning was related to RAPM but
was not significantly related to various measures of proces-
sing speed, which matches our results (although their results
differ from ours in that they did not find a significant
association between PA and RAPM). Secondly, a more recent
study conducted by Tamez, Myerson, and Hale (2008)
replicated the correlation between 3-Term and RAPM, but
also found that 3-Term correlated with RAPM even after
controlling for working memory. Thirdly, Alexander and
Smales (1997) found that the composite of various verbal
and nonverbal learning tasks was correlated at .49 with the
composite of various measures of general ability. The current
study is consistent with these studies but goes further, in that
it indicates the existence of a general associative learning
ability factor that is related to a latent g factor, even after
controlling for both processing speed and working memory.

The finding of a significant correlation between working
memory and g is consistent with a growing and consistent
literature on the strong relation between variation in working
memory and general cognitive ability (Conway et al., 2007;
Engle & Kane, 2004; Engle et al., 1999; Heitz et al., 2004;
Kyllonen, 1996; Kyllonen & Christal, 1990). The finding of a
significant relation between processing speed and g is also well
supported by a large literature (Deary et al., 2001; Jensen,
2006).

Table 3
Correlation matrix of latent variables in structural model (N=169).

Measure 1 2 3 4

1. g –

2. Working memory (WM) .48** –

3. Processing speed (Gs) .38** .24* –

4. Associative learning (AL) .45** .22* .17 –

*pb .05, **pb .01.

Fig. 1. Associative learning, working memory capacity (WM), and processing speed (Gs) independently predict g. See Table 3 for correlations among latent
predictors. N=169. χ2=175.21, df=111, pb .001, CFI=.96, TLI=.95, RMSEA=.059, p(close)=.189.⁎pb .05, ⁎⁎ pb .01.
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It should be noted that even though WM significantly
predicted g independently of the other variables, the effect
size of association between WM and g in our SEM models is
lower than what has been reported elsewhere (e.g., Conway
et al., 2002; Kyllonen & Christal, 1990). This difference may be
due to the fact that only one test of working memory was
administered in the current study. Adding more varied
indicators to the WM latent variable would most likely have
increased the relation between WM and g. Nonetheless, the
measure of working memory administered in the current
study, Operation Span, displayed similar zero-order correla-
tions with RAPM as in other studies (Conway et al., 2002;
Engle et al., 1999; Kane et al., 2004; Unsworth & Engle,
2005b), including a study that found an association between
the 3-Term learning task and RAPM, when controlling forWM
(Tamez et al., 2008).

A parallel concern to the use of only one working memory
task is the use ofmultiple associative learning tasks, creating a
model that is slightly unbalanced in the number of markers
for each of our three predictors, with the most markers for
associative learning. To address this concern we tested two
additional structural models, one excluding the PA task and
one excluding the 3-Term task. In both of these models, with
only one task used to create a latent associative learning
variable, the overall pattern of findings remained the same as
in Fig. 1, with all three latent variables significantly predicting
g. In both of these models, the paths from WM and AL to g
were not significantly different from each other.

Althoughmore thoroughmeasurement ofWMmight have
reduced the amount of variance in g explained by AL, it is
equally plausible that more thorough measurement of
associative learning could have reduced the variance
explained by WM. Indeed, Tamez, Myerson, and Hale
(2008) found that Ospan's correlation with RAPM was no
longer significant after controlling for 3-Term, suggesting that
it is an open question whether WM or AL is the primary
predictor of g. And of course there is a third alternative,
suggested by the present study, which is that bothWMand AL
predict g independently. Future studies will hopefully provide
a more thorough test of this hypothesis by including more
measures of both WM and AL. Constructing additional
associative learning tasks that tap into a general associative
learning ability factor will be an important step in this
direction (Williams et al., 2008).

The independent prediction of g by both working memory
and processing speed is inconsistent with work by Conway
et al. (2002), who found that processing speed no longer
predicted g after controlling for working memory. A compar-
ison of the processing speed tasks administered in their study
and the current study shows that very similar tasks were
administered, with one being identical (Digit–Symbol Cod-
ing). There are at least four possible reasons for the
discrepancy between our findings and theirs. First, their
assessment of g is not as comprehensive as ours, as they
utilized only the RAPM and one other very similar test. Thus,
their g is most closely related to the perceptual ability
component of the second-stratum factors identified by
Johnson and Bouchard (2005). Arguing against this explana-
tion, however, is the fact that when we re-ran our structural
model using observed RAPM scores as our criterion variable
instead of g, all three latent predictors remained significant.

The second possible reason for the discrepancy is that they
included a latent short-term memory variable as a predictor
in addition to working memory and processing speed. Short-
term memory was correlated with processing speed and
could have suppressed the latter's association with g. The
third possibility relates to our measurement of working
memory, discussed above. If we had used additional measures
of WM, WM might have related more strongly to g and this
additional variance predicted by WM might have rendered
that predicted by processing speed non-significant. Even if
this were the case, however, it might simply indicate that
processing speed is a lower-level mechanism that contributes
to WM as well as to g. The fourth possible reason for the
discrepancy is a difference in the developmental stage of the
participants. Their sample consisted of college students, who
were older than the current sample of Sixth Form students.

Before concluding, we should note that the associative
learning ability assessed in this study is distinct from the
associative paradigms that are used to assess implicit learning
and tacit knowledge (e.g., Gebauer & Mackintosh, 2007;
Reber, Walkenfeld, & Hernstadt, 1991). In implicit learning,
associations between stimuli are not acquired voluntarily, but
rely on mere exposure without awareness of the association.
In the associative learning tasks employed here, by contrast,
subjects consciously and voluntarily remember associations.
Different mechanisms are likely to be involved in explicit
versus implicit associative learning, and our findings should
not be assumed to generalize to implicit learning.

5. Conclusion

The results of the current study add to a growing literature
on the existence of multiple cognitive mechanisms that
support general cognitive ability (Sternberg & Pretz, 2005).
Our findings suggest that multiple cognitive processes —
including the abilities to process information quickly, to
maintain, update, and manipulate information in working
memory, and to learn specific associations between stimuli —
should contribute to performance on any highly g-loaded task.
Identification of separable elementary cognitive mechanisms
that support g should further attempt to develop neurobiolo-
gical theories of intelligence. Such theoriesmay help to resolve
current debates regarding the nature of the mechanisms
underlying g (e.g., Colom, Franciso, Quiroga, Shih, & Flores-
Mendoza, 2008). Evidence exists already that working
memory and associative learning rely on different regions of
the PFC (Petrides, 1995, 2000; Petrides et al., 1993), and
processing speed seems likely to be determined by a distinct
set of biological parameters that are not yet known. The
investigation of the precise number and nature of the
mechanisms that underlie g remains a promising line of
research.
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Corrigendum

Corrigendum to “Associative learning predicts intelligence above and
beyond working memory and processing speed”
[Intelligence 37 (2009) 374–382]

Scott Barry Kaufman a,⁎, Colin G. DeYoung b, Jeremy R. Gray a,c, Jamie Brownd, NicholasMackintosh d

a Yale University, Department of Psychology, USA
b University of Minnesota, Department of Psychology, USA
c Yale University, Interdepartmental Neuroscience Program, USA
d University of Cambridge, Department of Experimental Psychology, UK

Additional information is being included here to allow conversion from the standardized covariance matrix in Appendix A to
non-standardized form.

Means (with standard deviations): RAPM: 21.72 (5.48), DATV: 24.52 (5.82), MRT-A: 13.21 (5.32), SPEEDV: 41.36 (9.10),
SPEEDF: 64.70 (10.24), SPEEDN: 30.90 (4.17), Ospan2: 5.48 (.77), Ospan3: 8.0 (1.43), Ospan4: 9.50 (2.15), Ospan5: 10.0 (3.15),
Ospan6: 11.62 (3.67), ThreeTerm2: 9.27 (6.61), ThreeTerm3: 14.62 (7.91), ThreeTerm4: 18.82 (8.17), PA2: 20.54 (7.35), PA3:
24.08 (6.73), and PA4: 25.79 (5.85).

Please note that ThreeTerm1 and PA1 are included in the correlation matrix, although they are not included in the SEM. Also,
the correlation between THREETERM2 and SPEEDV should read .08 instead of .84 and the correlation between THREETERM1 and
SPEEDV should read .09 instead of .86.

2. A mean is reported incorrectly on p. 378, in the following sentence: “The first block of learning on 3-Term had both an
exceptionally low mean of 3.19 out of 30 correct and a standard deviation about half that of the other three learning trials.” The
mean is in fact 3.28 (as shown in Table 1).

3. The reliabilities of 3-Term and PAwere wrongly calculated with the first block of learning included in the α analysis. The first
block of learning should have been excluded, for the reasons mentioned on p. 377. The reliability for 3-Term excluding the first
block of learning is α=.89, and the reliability for PA excluding the first block of learning is α=.94.

4. In Table 2 (p. 378), several standard deviations are reported incorrectly. The correct standard deviations are: RAPM: 5.48,
DAT-V: 5.82, Ospan: 8.58, Speed-F: 10.24, and Speed-N: 4.17.
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