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Introduction
Assessment holds fundamental importance for many educa-
tional fields and gifted education is no exception. The infor-
mation gained through assessment is vital to making effective 
decisions regarding a child’s educational experience, includ-
ing the decision of whether or not that child should receive 
gifted education services. Quality assessment is often expen-
sive and time-consuming, requiring resources of money and 
time that schools almost always have in short supply. The 
conflict between the competing goals of achieving high-
quality assessment data while simultaneously preserving 
scarce resources has led to the adoption of two-stage assess-
ment systems both within and outside of education. Despite 
the fact that the qualities assessed during the gifted identifi-
cation process exist on a continuous scale (such as level of 
readiness or need), the resulting decision is dichotomous. 
Regardless of what criteria are used, which assessments are 
administered, or which students are tested, in the end the 
decision comes down to which students receive a particular 
service and which do not. Even if a school offers several dif-
ferent types of gifted education services, some criteria must 
be set to decide which students are placed in each of those 
services and which will receive no services.

Multistage Diagnostic Systems
The idea of a two-stage diagnostic system is simple. All 
members of the population take a quick and inexpensive 

Stage-I assessment or screening test. Those that test positive 
on the Stage-I screening assessment go on to take the Stage-II 
confirmatory assessment. The Stage-II assessment is gener-
ally more expensive, more time consuming, and more inva-
sive but it also possesses much higher psychometric quality 
(meaning excellent sensitivity and specificity) than the 
Stage-I assessment. The final decision is made on the basis 
of the Stage-II assessment, hence it is often called the “con-
firmation assessment.” Figure 1 shows a flowchart describ-
ing the two-stage screening process.

The two-stage process is often used in medicine. For 
example, it is very common for women to receive regular 
mammograms (the Stage-I assessment) to screen for possible 
breast cancer (National Cancer Institute, 2014). Those 
women with suspicious or problematic mammograms are 
referred for additional imaging or biopsy of the suspected 
tumor (the Stage-II assessment) in order to provide definitive 
evidence to begin a treatment plan.1 Two-phase systems are 
common across many domains. In psychology, a common 
screener is the Mini-Mental State Examination (Folstein, 
Folstein, & McHugh, 1975), which is given to screen for 
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dementia in mental health evaluations. During the identifica-
tion of specific learning disabilities, the initiation of a com-
prehensive identification process begins with teacher referral 
(Zumeta, Zirkel, & Danielson, 2014).

Similarly, in gifted education, it is common for the identi-
fication process to take place in two stages (National 
Association for Gifted Children [NAGC], 2013). The first 
stage is commonly known as the “nomination” stage, in 
which a group of potentially gifted students, or even an entire 
student population, is screened for further consideration. 
This is typically done on the basis of teacher or parent nomi-
nations, but in some settings can involve automatic nomina-
tions on the basis of high achievement test scores, parent 
nominations, peer nominations, or student self-nominations 
(McBee, 2006). In other settings, the nomination stage con-
sists of teachers completing a standardized checklist of gifted 
behaviors for each student in the class (e.g., Peters & Gentry, 
2010; Pfeiffer & Jarosewich, 2003). Those with scores above 
some threshold on the Stage-I assessment will be eligible to 
undergo the additional testing required to be identified for a 
particular gifted and talented intervention.

Diagnostic tests, whether in education or in medicine, 
sometimes result in incorrect decisions called false positives 
and false negatives. In medicine, a false positive error implies 
that the test indicates that a healthy patient has the condition. 
In gifted education, a false positive error could result in a 
student being placed in a gifted education program even 
though she does not meet the criteria, indicating that the stu-
dent might not benefit from the program. Likewise, false 
negative errors occur when a sick patient is classified as 
healthy by the test, or when a “truly” gifted student2 is missed 
by the test, and therefore does not receive the needed curricu-
lar modifications and services. Two fundamental metrics 
describe the performance of diagnostic tests. Sensitivity 
describes the proportion of “true positives” that receive a 
positive test result. Specificity describes the proportion of 
“true negatives” that receive a negative test result. A test with 

high sensitivity will produce a low false negative rate, where 
a test with high specificity will produce a low false positive 
rate. These metrics will be discussed more extensively later 
in this article.

Nissen-Meyer (1964) suggested that the purpose of a 
screening phase is to divide an entire population into two 
groups: Those who are in need of further evaluation because 
they might have a certain condition and those who, based on 
a certain level of confidence, can be assumed to not have the 
condition and therefore exempted from further testing. The 
screening phase is meant to solely separate a population into 
two groups—those for whom additional assessment is war-
ranted and those for whom it is unnecessary. The goal of the 
nomination stage in gifted education is to avoid the needless 
expenditure of assessment resources on students who are 
unlikely to need any additional services offered under the 
umbrella of gifted education. Accordingly, any test or pro-
cess to be used as a screener needs to possess certain charac-
teristics. It must be quick and simple to implement, relatively 
inexpensive, and not overly onerous to the administrator or 
the person being screened (Nissen-Meyer, 1964; Peters & 
Gentry, 2013). Above all, screening tests require very high 
sensitivity, because any false negatives that occur at this 
stage will not have a chance to be corrected—if a student 
who needs gifted services is not passed through the screening 
or nomination phase to the Phase-II confirmatory assess-
ment, she has no chance of being served. If these criteria are 
met, an optimal balance is achieved between efficacy and 
efficiency. Qaseem et al. (2012) argued that a major benefit 
of judicious use of screening phases is a significant decrease 
in the cost of identification. Rather than using diagnostic 
evaluations on the entire population—some of which are 
very expensive and/or uncomfortable for the person being 
tested—shorter, more logistically and physically palatable 
screeners can be used first to pare down the number of peo-
ple who need to be tested using the confirmation assess-
ments. With gifted education already funded at very low 

Figure 1. The medical model for screening tests.
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levels in most states (NAGC, 2013), it is highly desirable and 
in most cases, necessary, to limit assessment costs as much 
as possible.

Screening in Gifted Education
In the 2012-2013 State of the States of Gifted Education 
Report (NAGC, 2013), 33 states responded to a question 
regarding when students were typically identified for gifted 
and talented services. Although multiple responses to this 
question were allowed, the two most common were following 
a teacher referral (20 states) and following a parent referral 
(19 states). These teacher referrals vary widely in formality 
and could consist of anything from a generic teacher recom-
mendation for testing to a decision based on the responses to 
a formal teacher-rating instrument. There exists an entire 
genre of teacher rating scales (see Hoge & Cudmore, 1986; 
Peters & Gentry, 2010) that can act as population-level 
screeners before further diagnostic assessment is imple-
mented. Both the State of the States Report and a 2013 report 
from the National Research Center on the Gifted and Talented 
(Callahan, Moon, & Oh, 2013) noted that “parent or teacher 
nomination or referral is still a common entry point in the 
identification process at the elementary school level” (p. 14) 
where all students at a particular grade are screened using a 
nomination phase before then being tested further. While the 
exact extent of screening or two-stage identification systems 
is not known, it is clear that it is extremely common and likely 
influences the pathway through which the majority of stu-
dents in the United States are identified as needing additional 
advanced educational services.

The benefits of screening phases are only realized if the 
performance and efficacy of the assessment system as a whole 
is not severely degraded by the screener’s inclusion. In other 
words, saving money and time is a false economy if large 
numbers of students who need services are missed because a 
low-quality screener placed them in the group that did not 
need the full diagnostic testing (false negatives). This concern 
is shared by most fields that use two-phase systems including 
psychology and special education, particularly when the 
screener is a classroom teacher (Madelaine & Wheldall, 2005; 
VanDerHeyden, Witt, & Naquin, 2003; Zumeta et al., 2014). 
As we show later in this article, screeners can only reduce the 
sensitivity of the integrated assessment system. The inclusion 
of a screening or nomination phase can only result in more 
gifted students being missed than if the screener was skipped 
and all students in the population were given the confirmatory 
test(s), regardless of the quality of the screening tool or proce-
dure used. Despite this fact, screeners may be justified on a 
cost-benefit basis. Well-designed screening systems sacrifice 
minimal sensitivity in return for large reductions in the cost 
and time devoted to assessment. This tradeoff should always 
be considered when assessing the value of a particular screen-
ing system. Screeners do result in a reduction of the false 
positive rate since some students who would otherwise 

achieve a qualifying score on the confirmatory assessment via 
a positive measurement error will not receive a nomination, 
but this improvement is typically small relative to the poten-
tially large detriment in sensitivity as we will show later in 
this article.

This article investigated how the nomination stage and its 
characteristics affect the quality and cost of gifted identifica-
tion and had the following goals:

1. To describe how psychometric features of the nomi-
nation stage, including the reliability, validity, and 
cutoff, impact the performance of two-stage gifted 
identification systems.

2. To estimate the “typical” efficacy of the two-stage 
identification system commonly used to identify 
gifted students.

3. To describe how to select nomination cutoffs that 
result in the desired compromise between lost sensi-
tivity and cost savings.

Method

Background Framework
Because all test scores contain measurement error, decisions 
made on the basis of a test are sometimes wrong. Classical 
test theory (CTT) provides a useful means of analysis, as it 
conceptualizes all observed test scores as consisting of a stu-
dent’s true score plus measurement error. The following 
application of CTT is based on the outline of the model by 
Crocker and Algina (1986) and Lord (1980). The true score 
is what we want to measure. It is the construct of interest 
(e.g., giftedness, intelligence, school readiness). Error repre-
sents “noise” in the measurement and includes everything 
that affects the observed test score besides the construct of 
interest. With respect to gifted program identification, the 
true score defines who is gifted, the observed score defined 
who is identified as gifted, and the error causes these to be 
different. Our goal in assessment is to always try and decrease 
error as much as possible in order to obtain a purer measurer 
of the construct of interest.

The CTT model can be written as

 X T E= +  (1)

where

 E N~ ,0 2σ( )  (2)

In the CTT model, X represents the observed score, T the 
underlying true score, and E the measurement error. The 
measurement errors are conceptualized as random draws 
from a normal distribution with a mean of zero. Because the 
mean of the measurement errors are zero, the observed test 
scores are unbiased estimates of the true scores when 
averaged across many hypothetical measurement occasions. 
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In other words, the observed scores will not tend to be sys-
tematically too high or too low. Because measurement errors 
are assumed to follow a normal distribution, small errors are 
much more common than large errors. The variance of the 
normal distribution for the measurement errors (σ2) depends 
on the reliability of the assessment. High reliability implies a 
smaller ratio of measurement error variance to true score 
variance, so the observed scores will tend to be very close to 
the true scores. Low reliability means that the ratio of mea-
surement error variance to true score variance is larger, so the 
observed scores are on average quite different from the true 
scores. More formally, reliability ( ρXX ) is the proportion of 
true score variance in the observed scores (whose variance is 
the sum of the true score variance and error variance) and can 
be written as

 ρXX
Var T

Var T Var E
=

( )
( ) + ( )  (3)

This is equivalent to describing the reliability as the squared 
correlation between the true scores and the observed scores 
because the squared correlation coefficient is interpreted as 
the proportion of variance shared between a pair of variables. 
In a perfect world, 100% of the variance in an observed test 
score would be explained by the level of the construct pres-
ent in the test taker with no influence of measurement error. 
In a gifted education identification setting, this would mean 
a student’s identification as “gifted” (observed score) would 
depend solely on whether or not that student is actually 
gifted. However, in practice this is never the case since no 
test is completely error free.

Assessing the Performance of Identification 
Systems
As previously described, the performance of any identifica-
tion system can be quantified using four metrics. First is sen-
sitivity, the proportion of truly gifted students who are 
admitted to the program. Second is the false positive rate, the 
proportion of identified students who are not actually gifted. 
The false positive rate is the complement of specificity, 
which tends to be very high in even poor-performing gifted 
identification systems because only a small proportion of 
students are typically identified. For that reason, our analysis 
focuses on the related concept of the incorrect identification 
rate, which is the probability that a non–gifted student is 
identified (McBee, Peters, & Waterman, 2014). Finally, the 
false negative rate is the proportion of truly gifted students 
who are not identified and is the complement of sensitivity. 
Figure 2 provides a graphical representation of the possible 
results of an identification system.

The upper right quadrant includes those students who 
were identified based on their observed score and should 
have been because their true score is above the set criteria. 

These students represent true positives because we wanted to 
find them and we were successful in doing so. The bottom 
left quadrant is the largest in gifted education because it rep-
resents the students who we did not want to identify (because 
their true score was below the criteria), and they were suc-
cessfully labeled as not being gifted (based on their observed 
score). The other two quadrants represent false positives and 
false negatives—cases in which the decision made based on 
observed scores is different from that which would be made 
if we knew students’ true scores. These students are the pri-
mary focus of this article.

Identification System Performance With No Nomination Stage.  
As referenced earlier, screeners cannot improve the sensi-
tivity of an assessment system; they can only reduce it 
because of their position as an additional hurdle for gifted 
students to clear. Because of this fact, the important ques-
tion to consider when evaluating the impact of a screening 
phase is just how badly it degrades the overall efficacy of 
the identification system. The particulars of a given screen-
ing procedure determine whether the detrimental impact of 
the screener on system performance is negligible or 
extreme. Therefore, in order to evaluate empirically the 
effect of adding a nomination phase, we must first consider 
the performance of a single-assessment identification sys-
tem, sans screener, to serve as a point of comparison. This 
imaginary scenario of universal screening with a high-qual-
ity confirmation assessment serves as a best-case scenario 
since the addition of a screening phase can never improve 
the quality of the overall system.

Although many states and school districts now use some 
form of multiple-criteria assessment to determine which stu-
dents qualify for gifted education programs, here we con-
sider a simple single-assessment system. We choose a 
single-assessment system because multiple-criteria systems 
can make use of a number of different methods for combin-
ing scores, such as the “and,” “or,” or “mean” rules, or even 

Figure 2. The possible results of an identification system.

 by guest on June 29, 2016gcq.sagepub.comDownloaded from 

http://gcq.sagepub.com/


McBee et al. 5

complex combinations of rules. Each of these rules brings 
considerable complexity that is for the moment, irrelevant 
(McBee et al., 2014).

Our hypothetical single-assessment system is one in 
which gifted program placement decisions are made on the 
basis of a lone measure which will be administered to each 
student in the population—such as an entire school or grade 
level. A cutoff score is set, often at the 90th, 95th, or 99th 
percentile, to translate the continuous scores generated by 
the test into a binary placement decision (identified or not 
identified as gifted). This is the simplest possible identifica-
tion system. The psychometric performance of such a system 
is governed by the reliability of the test and the cutoff for 
program entry, with higher reliability and lower cutoffs lead-
ing to better sensitivity and lower incorrect identification 
rates and false negative rates. Table 1 (taken from McBee 
et al., 2014) illustrates the performance of single-assessment 
systems at varying cutoffs and reliabilities.

Assuming that the cutoff is held constant (i.e., the perfor-
mance standard considered to be indicative of giftedness 
does not change), the system performance depends only on 
the reliability of the test. The optimal performance of a sin-
gle-assessment system under optimistic, but potentially real-
istic, conditions (i.e., the reliability ρxx = . )95  is that only 
about 84% of qualifying students are actually admitted to the 
program. This is as efficacious as a single-assessment system 
can get in the real world because it is extremely difficult to 
design instruments that can achieve reliabilities of greater 

than .95. In fact, most identification instruments do not 
achieve reliabilities that high. We use this 84% sensitivity as 
a baseline when considering the degree of the negative 
impact of adding a screener to the system.

Parameters That Influence Nomination Stage Performance. Our 
analysis in this section is driven by the following example. A 
school identifies students for its gifted program using a two-
stage system. First, teachers are asked to nominate the stu-
dents in their classes whom they believe to be potentially 
gifted and in need of formal assessment to determine pro-
gram eligibility. Next, the nominated students are formally 
tested via a single-assessment system or a single composite 
score derived from multiple assessments. Those students 
who score higher than the 90th percentile on the assessment 
are admitted to the program. Alternately, the nomination pro-
cedure can require that teachers complete a formal teacher 
rating scale on each student rather than the teacher simply 
advancing a “list of names.” In this case, students whose 
teacher ratings exceed some cutoff are able to advance to the 
confirmation phase. In either case, the process and resulting 
methods listed below are the same.

A few key parameters determine how well such a system 
functions. In addition to the reliability and the cutoff of the 
confirmatory testing stage, there are now three additional 
parameters: (1) the reliability of the nomination, (2) the 
validity of the nomination, and (3) the nomination cutoff. We 
next consider each in turn.

Table 1. Performance of a Single-Assessment System by Cutoff and Reliability.

Cutoff Reliability Sensitivity False negative Incorrect ID rate

90th percentile (z =1.280) 1.00 1.000 .000 .000
 .95 .843 .157 .157
 .90 .776 .224 .224
 .85 .725 .275 .275
 .80 .680 .320 .320
 .75 .641 .359 .359
 .70 .604 .396 .396
95th percentile (z = 1.645) 1.00 1.000 .000 .000
 .95 .815 .185 .185
 .90 .738 .262 .262
 .85 .679 .321 .321
 .80 .628 .372 .372
 .75 .582 .418 .418
 .70 .541 .459 .459
99th percentile (z = 2.330) 1.00 1.000 .000 .000
 .95 .763 .237 .237
 .90 .665 .335 .335
 .85 .592 .408 .408
 .80 .530 .470 .470
 .75 .476 .524 .524
 .70 .428 .572 .572

Note. Bolded row indicates maximum performance for a plausible identification instrument. Table adapted from McBee et al. (2014).
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Nomination reliability. If the nomination consists of a 
published teacher rating scale, the meaning of this term 
is clear and the reliability can be estimated from the data 
or approximated using information published in the rating 
scale’s test manual (which we do later on for some popu-
lar teacher rating scales). However, if the nomination stage 
is an informal process consisting of teachers supplying a 
list of names of students who they are recommending for 
further testing, we frame the term “reliability” based on a 
cognitive model of how teachers decide whom to nominate. 
In this model, the teacher’s decisions are based on that indi-
vidual teacher’s experiences and preconceptions rather than 
research and formal guidelines. This understanding of “reli-
ability” is in concordance with research-based theories about 
categorization decisions (Murphy & Medin, 1985; Nosofsky 
& Palmeri, 1997; Rosch, 1978). We assume that teachers 
have an implicit theory of giftedness (which may or may 
not be valid) that they use to tacitly “score” each student in 
the class. In other words, teachers implicitly assign to each 
child a number representing the favorability of a compari-
son between that child’s behaviors and perceived abilities 
versus the teacher’s implicit theory of what “gifted” means 
and looks like (Miller, 2009). The “reliability” of the teacher 
nomination represents the precision of this judgment, or 
the degree to which small gradations of differences in per-
ceived standing are related to corresponding responses in the 
teacher’s subjective assessment of the students. Because we 
view this subjective judgment as a kind of latent continuous 
variable, we model it using the classic test theory concept of 
reliability—the proportion of variance in the teacher’s deter-
mination that is related to true differences between students 
rather than random error. For the purposes of our analysis, 
whether the nomination decision is based on a realized score 
on a formal nomination instrument or an implicit comparison 
against a subjective standard, nomination reliability means 
essentially the same thing and can be analyzed using the 
same psychometric model.

Nomination validity. In the case of rating scales, validity 
simply refers to the correlation between the rating scale score 
and the score on the confirmation assessment (or assess-
ments, in the case of multiple criteria). For generic teacher 
nominations, validity represents the degree of correspon-
dence between the teacher’s implicit theory of giftedness 
and the operational definition of giftedness to be imposed 
in the confirmation assessment phase. If the confirmation 
assessment is a single intelligence test, then the nomination 
validity represents the degree to which the teacher’s subjec-
tive judgment is responsive to the same skills and abilities 
that the confirmation assessment(s) measures. For example, 
if the teacher’s implicit theory of giftedness involves stu-
dents with excellent memory, ability to detect patterns, large 
vocabulary, and so on, and the confirmation test is the Stan-
ford-Binet Intelligence Test (Roid, 2003), then that teacher’s 
nomination validity is high. However, if the teacher instead 

nominates the most creative students in the class (something 
not measured by typical intelligence or achievement tests), 
the nomination validity is low. We represent the nomination 
validity as a correlation between the teacher’s latent “scores” 
(or ratings) for each student with respect to his or her own 
implicit theory of giftedness and the score that child will 
receive on the confirmation assessment(s).

Nomination cutoff. When published rating scales are 
used, the cutoff is often explicitly specified by school dis-
trict or state policy (e.g., 90th percentile). For informal 
nominations, the nomination cutoff represents how “gifted” 
the student must be perceived by the teacher to be in order 
to earn a nomination. If a teacher nominates students that 
he perceives as being slightly above average with respect 
to his implicit theory of giftedness, that teacher has a low 
nomination cutoff. A teacher who only nominates the “once 
in a generation” excellent student has a very high nomina-
tion cutoff. For modeling purposes, the cutoff represents 
the z-score on the latent variable, which is required before 
students may advance to the formal assessment phase. This 
operationalization is consistent with current psychological 
theories regarding implicit conceptions and categorization 
(Kruschke, 1992; Medin & Schaffer, 1978; Nilsson, Juslin, 
& Olsson, 2008; Nosofsky, 1986).

Performance Analysis
The strategy for analyzing the performance of an identifica-
tion system is based on the calculation of conditional proba-
bilities. For example, the definition of sensitivity is the 
probability of being identified conditional on being gifted. 
The conditional probability of event a given b is calculated 
by dividing the joint probability of a and b by the mar-
ginal probability of b. In other words, p(identified|gifted) = 
p pidentified gifted gifted& .( ) ⁄ ( )  If we assume that the 

nomination and confirmation test scores follow a multivari-
ate normal distribution, the required joint and marginal prob-
abilities can be calculated by numerically integrating the 
multivariate normal density. We performed these calcula-
tions using the R command sadmvn included in the library 
mnormt. We are considering here an identification system 
with a single nomination and a single assessment, but accord-
ing to classic test theory each has both an observed score and 
an underlying true score. Thus, there are four variables in the 
system to consider. Just as the normal distribution is gov-
erned by its mean and variance, the multivariate normal dis-
tribution is governed by a mean vector, which provides the 
mean of each constituent variable, and the covariance matrix, 
which provides information on the variances of each variable 
and its correlations with the other variables in the system. 
The construction of the covariance matrix begins by specify-
ing a priori the following parameters: the nomination reli-
ability ( ρoo ), the test reliability ( ρtt ), and the validity 
coefficient ( rn t, ), where the validity coefficient represents 
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the correlation between observed scores. It is necessary to 
apply the correction for attenuation (Crocker & Algina, 
1986) formula to calculate the corresponding correlations 
between true scores and observed scores as well as true 
scores and true scores. If the variables are to be on a z-score 
metric, the diagonal elements of the matrix should all be one, 
implying that the variance (and standard deviation) of each 
variable is one, and that the off-diagonal covariance elements 
are equal to correlations. Letting the order of variables be 
nomination true score ( ntrue ), nomination observed score 
( nobs ), confirmatory test true score ( ctrue ), and confirmatory 
test observed score ( cobs ), the variance-covariance matrix is 
as follows.

 

Cov n n c c
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true obs true obs
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 (4)

The values in this covariance matrix bear some explana-
tion. The correlation between the observed nomination score 
and the observed confirmatory test score is rn cobs obs, . The reli-
ability coefficient for the nomination is ρnn ; the covariance 
(correlation) between the nomination observed score and the 
nomination true score is therefore the square root of the reli-
ability. The reliability coefficient for the confirmatory test is 
ρcc. The remaining covariances involve one or more true 
scores. The correlation between observed scores is sup-
pressed by measurement error. Therefore, the covariances 
involving true scores must be corrected for attenuation 
(Crocker & Algina, 1986). The disattenuated correlation 
coefficient is calculated by dividing the observed correlation 
by the square root of the product of the reliabilities of the 
involved variables. When one of the involved variables is a 
true score, its reliability appears in the denominator.

After specifying this covariance matrix and mean vector 
of zeros, the conditional probabilities can be computed by 
numerical integration of the multivariate normal distribution. 
By fixing the mean vector to zero and the variances to one, 
the variables exist on a familiar z-score metric. It then 
becomes quite convenient to identify cutoff values corre-
sponding to common percentiles required for gifted program 
entry (i.e., 90th percentile) by referring to a table of normal 
curve areas such as can be found in the appendix of most any 
introductory statistics textbook (e.g., Aron, Coups, & Aron, 

2013). For example, the z-score cutoff corresponding with 
the 90th percentile is z = 1.28.

Letting the order of variables be as before, sensitivity can 
be calculated as follows:

 

sensitivity
gifted identified

gifted
=

( )
( )

= −∞

∞ ∞∞∞

∫ ∫∫∫

p

p

,

υ τ τ

N4 µµ,,

,

ΣΣ

ΣΣ

( )

( )
−∞

∞

−∞

∞ ∞

−∞

∞

∫ ∫ ∫ ∫

K K

K

d d d d

d d

c c n n

c

obs true obs true

obs

τ

N4 µµ cc n ntrue obs true
d dK

 (5)

where τ  is the test cutoff z-score, υ  is the nomination cutoff 
z-score, µ is a 4 × 1 mean vector of zeros, and ΣΣ  is a 4 × 4 
variance-covariance matrix as specified in Equation 4.

The logic of this is as follows: a gifted individual is 
operationally defined as one for whom the confirmation 
test true score ( ctrue ) on the test is above the cutoff (τ ). 
The nomination true score ( ntrue ), confirmation test true 
score ( ctrue ), and nomination observed scores ( nobs ) are 
irrelevant. The integral in the denominator represents this 
idea. These quantities are integrated from negative to posi-
tive infinity, whereas the test true score is integrated from 
τ  to positive infinity. This integral, found in the denomina-
tor of the sensitivity equation, computes the proportion of 
students who would be expected to have true scores above 
the cutoff (based on whatever cutoff is selected as the crite-
ria for “gifted”), without requiring that they satisfy any 
other criterion. The numerator of the sensitivity equation 
computes the proportion of students that will be true posi-
tives, meaning that they are gifted and identified. Being 
gifted requires that the true test score ( ctrue ) be above τ. 
Being identified requires that the observed nomination 
score ( nobs ) be above υ  and that the observed test score 
( cobs ) also be above τ; the former constraint requires that 
gifted students receive a nomination while the latter that the 
student receives a qualifying observed score on the confir-
matory test. These constraints appear as the limits of inte-
gration. Similarly, the incorrect identification rate can be 
calculated as
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because an incorrect identification means that the student 
receives a nomination and a qualifying observed confirmation 

 by guest on June 29, 2016gcq.sagepub.comDownloaded from 

http://gcq.sagepub.com/


8 Gifted Child Quarterly 

test score but has a true test score below the cutoff (τ). The 
positive predictive value (PPV) can be calculated as

 PPV = −1 incorrect identification rate  (7)

and the proportion of students identified as

 p d d d dc c n nobs true obs tru
identified( ) = ( )

−∞

∞ ∞

−∞

∞ ∞

∫ ∫ ∫ ∫
υ τ

N4 µµ ΣΣ, K K
ee
 (8)

Our analysis was performed by specifying the values of 
the nomination reliability ( ρnn ), nomination validity ( rn cobs obs, ), 
and confirmatory test reliability ( ρcc ). We could then com-
pute the values necessary to populate the variance-covari-
ance matrix (ΣΣ, Equation 4). Next we specified the 
nomination cutoff (υ ) and test cutoff (τ ), and then used R’s 
sadmvn function to approximate the values of the integrals in 
Equations 5, 6, and 8. We fixed the confirmatory test reliabil-
ity to .95 (again, ambitious but also achievable) and the test 
cutoff to the 90th percentile (z = 1.28) for all our computa-
tions. Our analysis program looped through ranges of plausi-
ble values for the nomination reliability ( )ρnn , the nomination 
validity, ( rn cobs obs, ), and the nomination cutoff υ( ), allowing 
the creation of graphs displaying the influence of these 
three parameters on the integrated identification system’s 
performance.

Results

Effects of Nomination Reliability, Validity, and 
Cutoff on System Performance
Figure 3 summarizes how the system sensitivity responds to 
change in the three parameters discussed above. In this fig-
ure, the parameters of the testing phase are set to their most 
optimistic plausible values with test reliability of .95 and a 
cutoff at the 90th percentile. According to Table 1 and as 
referenced earlier, with the test reliability fixed at .95 and the 
test cutoff set at the 90th percentile, the sensitivity of an 
identification system with no screener is .843. This value is 
the maximum possible performance and is represented in the 
figure by dashed horizontal lines. Figure 3 presents five pan-
els, one for each level of nomination reliability (representing 
different levels of measurement error present in the screen-
ing phase). Nomination validity is plotted on the x-axis, inte-
grated system sensitivity on the y-axis, and the values for the 
nomination cutoff are represented as separate lines.

The reliability of an assessment limits its maximum cor-
relation with other variables (overall system validity). Since 
the system validity coefficient represents the correlation 
between the (observed) nomination “scores” and the confir-
mation observed test scores, low reliability for nominations 
puts an upper limit on the overall system validity coefficient 
(Crocker & Algina, 1986). This is reflected in the figure, as 

the plots do not extend across the full horizontal range of 
validity when reliability is low. The figure reveals that sensi-
tivity is mostly a function of the nomination validity and the 
nomination cutoff. Nomination reliability itself had little 
impact other than by constraining the validity coefficient. 
Nomination validity and the nomination cutoff clearly inter-
act. If the nomination cutoff is set low enough, perhaps at the 
50th percentile, sensitivity remains at reasonable levels even 
when validity is moderately poor. In such a situation enough 
students pass through the nomination stage that they are then 
“found” by the confirmation phase, but this comes at the cost 
of having to test a much larger number of students. Few stu-
dents are missed due to failure to pass through the nomina-
tion stage because the nomination cutoff is set at a relatively 
low level (50th percentile). As is shown next, the same can-
not be said when nomination cutoffs are set at more typical 
levels.

High nomination cutoffs, in which the standard for nomi-
nation approaches the confirmation test threshold (e.g., at the 
90th percentile), lead to extremely low sensitivity. In this 
case, the psychometric quality of the confirmatory assess-
ment hardly matters because so few students who are capable 
of meeting the cutoff for that phase would ever been tested. 
We find this alarming as we believe that teachers often only 
nominate those students that they perceive to be “truly” or 
extremely gifted (Carman, 2011; Neumeister, Adams, Pierce, 
Cassady, & Dixon, 2007; Peterson, 1999; Plata, Masten, & 
Trusty, 1999; Siegle & Powell, 2004). In this case, the sys-
tem sensitivity can easily fall into the 30% range, meaning 
that 70% of qualifying students—those who the system was 
explicitly designed to find—do not gain access to the pro-
gram. Increased validity allows the system to tolerate 
increasingly stringent nomination cutoffs—the more accu-
rate the assessments, the higher the cutoffs can be while still 
“catching” the right students. Even at the highest validity, 
however, a nomination cutoff equal to the identification cut-
off (at the 90th percentile for both) leads to unacceptably 
poor sensitivity.

Next, we considered the impact of a screener on the sys-
tem incorrect identification rate: the proportion of identified 
students who do not actually qualify (with respect to their 
true score). In a single-assessment system with no nomina-
tion phase, the incorrect identification rate and the false neg-
ative rate are balanced (as can be seen from Table 1). This is 
no longer the case when a nomination phase is added. As 
shown in Figure 4, the nomination validity and cutoff again 
prove to be the key parameters in affecting the incorrect clas-
sification rate, with higher cutoffs and low validity both 
resulting in fewer incorrect identifications, but at the expense 
of more false negatives.

While reducing incorrect identification rate is always in 
itself desirable, we think it is more important to consider the 
tradeoff between incorrect identifications and false nega-
tives. Decreasing the incorrect identification rate necessarily 
increases the false negative rate. The ideal balance between 
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incorrect identifications and false negatives depends on the 
specific nature of the educational programming to follow a 
successful identification and particularly on the conse-
quences of failing to thrive in the program (Peters, Matthews, 
McBee, & McCoach, 2014). For example, a child’s unsuc-
cessful attempt at an after-school enrichment program may 
have minimal negative consequences, whereas a child who 
cannot perform after skipping a grade may require a logisti-
cally and socially fraught process of reintegration into her 

old classroom placement. In the former situation, it would be 
wise to design an identification system that tends to favor 
incorrect identifications rather than false negatives, whereas 
in the latter, incorrect identifications are very problematic. 
Therefore there is no globally correct decision with regard to 
incorrect identifications and false negatives; one must take 
into account the program to be provided and its potential for 
negative outcomes as a result of an incorrect placement in 
order to decide which is preferable.

Figure 3. Sensitivity of a two-stage, single-assessment system by nomination reliability, validity, and cutoff.
Note. Test cutoff set to 90th percentile and test reliability set to .95. Horizontal dotted lines indicate system performance with no screener.

 by guest on June 29, 2016gcq.sagepub.comDownloaded from 

http://gcq.sagepub.com/


10 Gifted Child Quarterly 

Finally, we considered the impact of the nomination stage 
on the proportion of children identified for the program. In a 
single-assessment system, the expected program size is a 
function of the cutoff only. If the cutoff is set at the 90th per-
centile, then the expected proportion of students qualifying 
for the program should be roughly 10%, assuming that the 
school resembles the norm group for the test or that local 
norms are used as the point of comparison. Figure 5 illustrates 

the consequences of adding a nomination stage with varying 
reliability, validity, and cutoff.

As can be seen from the figure, the story remains the same. 
High cutoffs at the nomination stage can strongly limit the 
program size (below what it is seemingly intended, based on 
the criteria for “gifted” being set at the top 10% in this exam-
ple). Setting a high nomination cutoff means that some of 
those students who would have met the 90th percentile 

Figure 4. Incorrect identification rates for a two-stage, single-assessment system by nomination reliability, validity, and cutoff.
Note. Test cutoff set to 90th percentile and test reliability set to .95. Horizontal dotted lines indicate system performance with no screener.
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criteria on the confirmation assessment are never given a 
chance to take the test. This means they are never identified 
and thus the size of the resulting “gifted” population is 
decreased from what it should be. Furthermore, Figure 5 
shows that the degree of program size reduction at a given 
nomination cutoff is also inversely proportional to the nomi-
nation validity. This demonstrates that the nomination phase 
can significantly decrease the size of the identified population 

in addition to decreasing the overall efficacy of the identifica-
tion system.

Realistic Estimates of System Performance
Given the above theoretical analysis, how well does the typi-
cal identification system, as implemented in thousands of 
schools across the United States, actually function in finding 

Figure 5. Proportion of students identified in a two-stage, single-assessment system by nomination reliability, validity, and cutoff.
Note. Test cutoff set to 90th percentile and test reliability set to .95. Horizontal dotted lines indicate system performance with no screener.
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the students it sets out to find? Here we consider such a ques-
tion using evidence of reliability and validity from published 
teacher rating scales as they might be used in a nomination 
phase. Informal teacher nominations are probably much 
worse than this but there is no way to know for sure. The 
validity of implicit theories is mediated by experience 
(Medin & Schaffer, 1978). As teachers only rarely receive 
training in gifted education (NAGC, 2013), their implicit 
theories of giftedness are unlikely to have close correspon-
dence with the school or district’s operational definition, 
leading to low system validity. Research on the performance 
of classroom teachers as referral agents indicates there is a 
large degree of variability in the validity of teacher recom-
mendations (Carman, 2011; Hunsaker, Finley, & Frank, 
1997; McBee, 2006; Miller, 2009; Siegle, Moore, Mann, & 
Wilson, 2010). In most cases, we suspect that the nomination 
cutoffs in general are much higher than their optimal levels. 
This is a direct consequence of requesting that teachers nom-
inate those students whom they suspect of being “gifted” 
rather than those students who are above average. Table 2 
contains validity information for the Scales for Identifying 
Gifted Students (SIGS; Ryser & McConnell, 2004) rating 
scale. We chose this scale because we believe it has a high-
quality research base and because its test manual provides an 
extensive set of reliability and validity information.

For the following analysis, we set the SIGS reliability to 
.95, as this is a rough average for the alpha reliability at the 
elementary level (Ryser & McConnell, 2004). We set the 
reliability of the confirmatory test to .95 and its cutoff to 
90%. We use the published correlations between the SIGS 
General Intellectual Ability subscale and the Wechsler 
Intelligence Scale for Children, 3rd Edition (WISC-III; r = 
.67), Test of Cognitive Skills, 2nd Edition (TCS-2; r = .73), 
and Cognitive Ability Test (CogAT; r = .48) as the validity 
coefficients (Ryser & McConnell, 2004). We can then calcu-
late the performance of many potential identification sys-
tems in which the SIGS General Intellectual Ability subscale 
is used at the nomination instrument with various cutoffs. 
The results are displayed in Table 3.

The performance analysis indicates that when nomination 
cutoffs are high, the overall system performance can only be 
described as unacceptable, particularly when the WISC-III 
or CogAT are the confirmation stage instruments, as around 
60% to 70% of the qualified students are missed when high 
cutoffs are used with those instruments. For example, if the 
confirmatory assessment was the CogAT, and the nomination 
cutoff on the SIGS general intellectual ability subscale was 
set to the 90th percentile, the integrated system sensitivity 
would be .28. Only 28% of the “truly” gifted students2 would 
be identified. This sensitivity should be contrasted against 
the 84% sensitivity that would have been achieved if the 
screener had not been used and instead the CogAT had been 
given to all students; the relative integrated system sensitiv-
ity that would result would be only 33% of its optimal value. 
The TCS-2 as a confirmatory assessment following the SIGS 

fared somewhat better because its validity coefficient is 
higher, but still does not approach a reasonable level of per-
formance with high nomination cutoffs. When a 90th percen-
tile cutoff is used for the TCS-2, the integrated system 
sensitivity is 45%, implying that system sensitivity is roughly 
halved as a result of the inclusion of the screener. In either 
case, the addition of a screening phase has devastated the 
quality of the resulting gifted identification decisions. In 
both cases the identification system failed to find the major-
ity of students it set out to find.

This analysis has been limited to systems with a single 
confirmatory test. However, many school districts have now 
adopted multiple criteria assessment systems. When multiple 
scores are combined using “and” rules (McBee et al., 2014), 
the lowest correlation between the nomination and the instru-
ments in the assessment package sets an upper bound on sys-
tem performance. Many multiple criteria systems, such as 
Georgia’s, involve measures of creativity, which are often 
poorly correlated with scores on gifted rating scales because 
they are inherently looking for different things. For example, 
Table 4 provides correlations between the Gifted Rating 
Scales–School Form (GRS; Pfeiffer & Jarosewich, 2003) 
subscales and the Torrance Test of Creative Thinking-
Figural. Again, we chose the GRS in this case because it too 
has a strong research base and is likely of higher quality than 
many other published rating scales. Though we do not pro-
vide an analysis of the consequences of these low validities, 
based on Figure 3, it should be clear that the psychometric 
performance of any identification system involving the use 
of the GRS or any of its subscales as a nomination instrument 
for an assessment system that includes the Torrance Test of 
Creative Thinking in an “and” rule could only be described 
as abysmal.

Setting Optimal Nomination Cutoffs
In the previous section, we described how severely the per-
formance of a gifted identification system can be damaged 
when a nomination stage is added with a cutoff higher than 

Table 2. Validity Coefficients (Correlations) of SIGS Subscales 
With Measures of Academic Ability.

SIGS subscale WISC-III TCS-2 CogAT

General Intellectual Ability .67 .73 .48
Language Arts .62 .72 —
Mathematics .47 .88 —
Science .56 .89 —
Social Studies .53 .83 —
Creativity .38 .86 —
Leadership .53 .84 —

Note. SIGS = Scales for Identifying Gifted Students; WISC-III = Wechsler 
Intelligence Scale for Children, 3rd Edition; TCS-2 = Test of Cognitive 
Skills, 2nd Edition; CogAT = Cognitive Ability Test. Table adapted from 
Ryser and McConnell (2004).
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can be supported by its validity coefficient. We also provided 
some evidence that this is probably the usual state of affairs 
in gifted education. In this section we describe how the use 
of a nomination stage could be improved in order to make it 
successful at decreasing the cost and time of assessment 
while having only a minimal negative impact on the system 
sensitivity.

Background. In order to perform a rigorous analysis of clas-
sification tests, we assume that an individual can be in one of 
two states, such as being gifted or not being gifted. That indi-
vidual takes an assessment that yields a continuous score. A 
cutoff value is specified, such that scores on the assessment 
above the cutoff are taken to indicate that the condition (e.g., 
giftedness) is present while a score at or below the cutoff 
indicates that the condition is absent. The choice of the cutoff 
directly affects the test’s sensitivity and specificity. For 
example, if the cutoff is set at the lowest possible score that 

the assessment can generate, all test takers will be classified 
as having the condition. Therefore there will be no false neg-
atives, and sensitivity will be a perfect 100%. However, the 
test will generate a huge number of false positives. In fact, 
because everyone will be classified as having the condition, 
the false positive rate will be 100%. Using the assessment’s 
highest possible score as the cutoff will have the opposite 
effect. No one will be classified as having the condition, so 
the false positive rate will be 0%, but sensitivity will also be 
0%. The test’s sensitivity and false positive rate can be com-
puted for every choice of cutoff between these extremes. 
This information can be summarized by a plot called the 
receiver operating characteristics (ROC) curve, which plots 
sensitivity on the y-axis against the false positive rate on the 
x-axis. An example ROC curve is provided in Figure 6.

The diagonal line on the ROC curve is the line of no dis-
crimination; it represents what the ROC curve would look 
like for a completely noninformative test. The better the test, 
the further the ROC curve will deviate from that line. Each 
point on the ROC curve represents the sensitivity and false 
positive rate that would result from a different choice for the 
cutoff score. The optimal cutoff score is the one that results 
in the best compromise between sensitivity and the false 
positive rate, and can be identified as the point that is most 
distant from the line of no discrimination. The psychometric 
quality of the test (i.e., reliability and validity) determines 
the shape of the ROC curve, with higher-quality tests having 
ROC curves that curve sharply away from the line of zero 
information.

Application to Two-Stage Identification Systems. A modified ver-
sion of ROC curve analysis can be used to better understand 

Table 3. Performance of Systems Using SIGS General Intellectual Ability Subscale for Nomination by Nomination Cutoff and by Phase-2 
Assessment.

Instrument Nomination cutoff Sensitivity False negative rate Incorrect ID rate Proportion identified

WISC-III (r = .67) 50th percentile .798 .202 .144 .094
 60th percentile .759 .241 .136 .088
 70th percentile .694 .306 .126 .080
 80th percentile .588 .412 .110 .066
 90th percentile .404 .596 .087 .044
TCS-2 (r = .73) 50th percentile .818 .182 .147 .096
 60th percentile .790 .210 .139 .092
 70th percentile .738 .262 .127 .085
 80th percentile .640 .360 .110 .072
 90th percentile .453 .547 .082 .049
CogAT (r = .48) 50th percentile .709 .291 .141 .083
 60th percentile .643 .357 .134 .075
 70th percentile .556 .444 .127 .064
 80th percentile .441 .559 .117 .050
 90th percentile .280 .720 .102 .031

Note. SIGS = Scales for Identifying Gifted Students; WISC-III = Wechsler Intelligence Scale for Children, 3rd Edition; TCS-2 = Test of Cognitive Skills, 
2nd Edition; CogAT = Cognitive Ability Test. Assumed reliability of .95 and cutoff at 90th percentile for each instrument. Validity coefficients for each 
instrument were estimated from data in Table 2.

Table 4. Validity Coefficients (Correlations) for GRS-S Subscales 
With TTCT, Figural.

GRS-S subscale TTCT Figural

Intellectual 0.19
Academic 0.21
Creativity 0.14
Artistic 0.15
Leadership 0.14
Motivation 0.27

Note. GRS-S = Gifted Rating Scales–School Form; TTCT = Torrance Test 
of Creative Thinking. Table adapted from Pfeiffer and Jarosewich (2003).
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nomination cutoff changes the integrated sensitivity and 
false positive rate in two-stage identification systems. The 
principle is simple. Begin by fixing the values of the confir-
matory test reliability, cutoff score, the nomination validity, 
and nomination reliability coefficients. Then compute the 
sensitivity and incorrect identification rates of the integrated 
identification system using the methods previously outlined 
in this article. Performing this computation across a range of 
possible nomination cutoff scores yields a series of points 
which, when plotted, yield the modified ROC curve. Results 
of this analysis for an identification system in which nomina-
tion reliability is set to .90, nomination validity is set to .70, 
the test reliability is set to .95, and the test cutoff is set to the 
90th percentile, are presented in Figure 7.

The reference lines at 84% sensitivity and 16% incorrect 
identification rate display the performance that would occur 
if the nomination stage was abolished and instead the confir-
mation assessment was given to all students. The numbers 
next to each point indicate the nomination cutoff score (as a 
percentile) corresponding with those values for the com-
puted sensitivity and false positive rate.

The pattern is interesting. In traditional ROC curve analy-
ses of single instruments, there is a clear tradeoff between 
sensitivity and the false positive rate (or the related incorrect 
identification rate) as cutoffs vary. In the two-stage ROC 
curve, the confirmatory test provides strong protection 
against incorrect identifications because false positives with 
respect to the nomination are unlikely to successfully qualify 
on the test. In contrast, the confirmatory assessment can pro-
vide no protection whatsoever against false negatives 

because those students that get a false negative with respect 
to the nomination are denied access to the confirmatory test. 
As a result, the points of the two-stage ROC curve are con-
fined to the “box” imposed by the maximum sensitivity and 
maximum incorrect identification rates that would occur in 
the absence of the screening test, and the usual sensitivity-
specificity reciprocity is altered such that sensitivity varies 
with the cutoff much more strongly than specificity.

The optimal nomination cutoff, where “optimality” is 
defined as the best compromise between sensitivity and the 
incorrect identification rate, is therefore found at the point of 
maximum sensitivity, and this value will be found at the low-
est possible cutoff on the nomination instrument. A ROC 
curve analysis for the two-stage identification system would 
therefore suggest that the screening process be removed, 
although as can be seen in Figure 7, sufficiently low nomina-
tion cutoffs result in nearly imperceptible reductions in 
sensitivity.

Optimal Nomination Cutoffs are a Values Proposition. Earlier in 
this article, we described useful screeners as those that sub-
stantially reduce the time and cost of assessment while 
imposing only a mild performance penalty. The ROC curve 
analysis locates an optimal tradeoff between sensitivity and 
specificity. The adoption of a nomination phase as prelude to 
formal evaluation is motivated by concerns of cost and effi-
ciency rather than maximizing psychometric performance—
as we have stated several times, adding a screening phase can 
only harm the efficacy of the resulting data. Optimizing the 
nomination process with respect to the two primary consid-
erations of sensitivity vs. cost becomes a values proposition 
with no simple answer. The real question should be, “how 
much sensitivity am I willing to sacrifice to achieve a given 
level of cost savings?” On this point, we can provide guid-
ance. Table 5 provides the absolute and relative sensitivity 
and false positive rates by nomination cutoff for a two-stage 
identification system with nomination validity equal to .7. 
Different levels of nomination validity would result in differ-
ent values in this table. We chose a validity coefficient of .7 
because, on consideration of the literature regarding teach-
ers’ beliefs about giftedness (i.e., Berman, Schultz, & Weber, 
2012; Miller, 2009; Siegle et al., 2010), this is about as high 
of a validity coefficient as one could expect to encounter. 
One could expect the absolute and relative sensitivities to 
degrade even more rapidly as the nomination cutoff is raised.

Table 5 indicates that if the nomination validity is equal to 
.7, setting the nomination cutoff to the 55th percentile (barely 
above average) would reduce the relative integrated system 
sensitivity to 95% of its optimal value. Raising the nomina-
tion cutoff to the 65th percentile would reduce the relative 
integrated system sensitivity to 90%.

Table 6 and Figure 8 provide the nomination cutoffs nec-
essary to achieve a tolerable decrease in relative sensitivity 
for nomination instruments with varying levels of validity. 
As before, relative sensitivity is defined with respect to the 

Figure 6. Example ROC curve.
Note. Numbers above each plotted point provide the percentile cutoff for 
that point.
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sensitivity that would have been achieved with no nomina-
tion stage at all, which is 84.3% when the test cutoff is at the 
90th percentile and the test reliability is .95. This analysis 
was performed by computing the integrated system sensitiv-
ity at 10,000 equally spaced nomination cutoffs from z = 
−0.5 (30.8th percentile) to z = 3.0 (99.9th percentile) for 19 
choices of nomination validity—from .00 to .95 in .05 incre-
ments. We used values of .90 for the nomination reliability 
and .95 for the test reliability. We identified the nomination 
cutoffs necessary to achieve sensitivity reductions of 2%, 
5%, 10%, 15%, 20%, 30%, 40%, or 50% by specifying a 
loss function defined as (0.843 – (0.843*target sensitivity 
reduction) – sensitivity)2 and then used R to find the nomi-
nation cutoff corresponding with the minimum value of the 
loss function, resulting in the selection of the nomination 
cutoff that most closely results in the desired sensitivity 
reduction.

The bottommost plotted curve in Figure 8 indicates the 
nomination cutoffs that must be used to achieve no more 

than a 2% drop in relative sensitivity, which corresponds 
with an absolute sensitivity of 82.6% in this case. For exam-
ple, if the nomination instrument has a validity of .60, the 
highest tolerable nomination cutoff is about 30th percentile. 
This implies that 70% of the students can be expected to 
pass the nomination stage and should receive the Stage-II 
confirmatory assessment. If policy makers are willing to 
accept a 20% loss of relative sensitivity, a cutoff at the 67th 
percentile could be used. The school could now expect to 
bear the expense of testing 33% of the students, meaning 
they spend less than half on testing compared with the previ-
ous example, but at the cost of many more false negative 
identification decisions. The 20% loss of relative sensitivity 
implies an absolute sensitivity of 67.4%, so roughly a third 
of the school’s gifted students would not be identified even 
though they should have been. Using Table 6 and Figure 8 
most schools and districts should be able to find a rough 
approximation for their practice in order to inform their own 
identification policy.

Figure 7. Modified ROC curve for nomination cutoffs in a two-stage identification system.
Note. Nomination reliability = .90; nomination validity = .70; test reliability = .95; test cutoff = 90th percentile. Numbers beside each plotted point give 
the nomination cutoff at that point. The horizontal and vertical reference lines display the sensitivity and incorrect identification rate, respectively, of a 
corresponding single assessment system without a nomination stage.
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Discussion

The analysis presented in this article shows that, unless nomi-
nation stages are carefully constructed with high validity 
(which requires high reliability) and low cutoffs (low espe-
cially when compared to traditional gifted education cutoffs of 
90th percentile or higher), they are almost always extremely 
detrimental to identification system performance. However, 
screening/nomination stages can be quite helpful when they 
adhere to psychometric principles. Given that the use of nomi-
nation stages is extremely common in gifted education, and 
that these issues have not been widely understood by practitio-
ners in the field, we find it likely that most identification sys-
tems that have incorporated a nomination stage have not 
performed well and, in fact, have missed larger percentages of 
gifted students then they have actually successfully identified. 
Adapting a slight variation on Freedman’s (1991) comments 
on regression models, we offer the following four possibilities 
for identification systems involving nomination stages:

1. Nomination stages usually work, although they are 
(like anything else) imperfect and may sometimes go 
wrong.

2. Nomination stages sometimes work in the hands of 
skillful practitioners, but aren’t suitable for routine use.

3. Nomination stages might work, but they haven’t yet.
4. Nomination stages can’t work (Freedman, 1991,  

p. 292).

Like Freedman, we believe that the truth is bracketed by 
options two and three, and we lean toward option three. In 
common identification practice, cutoff criteria are set at the 
“gifted” range for both the nomination and the confirmation 
assessment phases. If nominations are to be implemented at all, 
it is of utmost importance that only high-validity instruments 
and procedures should be used. In most cases, the nomination 
cutoffs will require substantial reduction in order to achieve 
reasonable performance given the low correlations that often 
exist between screening and confirmation assessments. We 
believe this is a key point that is not widely appreciated.

Currently implemented nomination practices likely result 
in very few false positive identification decisions (meaning 
few students are identified “on accident”) at the cost of a tre-
mendous numbers of false negatives (many students are 
missed who should have been identified). In some cases this 
may be an appropriate balance—such as when programs could 
be dangerous or harmful for those students who are not truly 
ready. However, we believe that in most cases, this practice is 
needlessly exclusionary and should be modified to more cor-
rectly balance false negatives with incorrect identifications. 
Addressing this has a relatively simple set of solutions.

1. Increase the validity of nominations.
a. When informal nominations are solicited from 

teachers, the teachers should be trained to rec-
ognize the qualities that will be assessed during 

Table 5. Absolute and Relative Sensitivity and Incorrect 
Identification Rates for a Two-Stage Identification System With 
Nomination Validity of .70 by Nomination Cutoff.

Nomination cutoff

Sensitivity
Incorrect 

identification rate

Absolute Relative Absolute Relative

.05 .843 1.000 .157 1.000

.10 .843 1.000 .157 1.000

.15 .842 .999 .157 .998

.20 .841 .998 .156 .995

.25 .840 .996 .155 .990

.30 .837 .993 .154 .983

.35 .833 .988 .153 .973

.40 .828 .982 .151 .961

.45 .820 .972 .148 .945

.50 .809 .960 .145 .926

.55 .795 .942 .142 .904

.60 .775 .920 .138 .876

.65 .750 .889 .132 .843

.70 .716 .850 .126 .804

.75 .672 .797 .119 .757

.80 .614 .728 .110 .700

.85 .535 .635 .099 .630

.90 .428 .508 .085 .541

.95 .272 .323 .063 .404

Note. Nomination reliability = .90, test reliability = .95, test cutoff = 90th 
percentile. Other values of nomination validity would result in differing 
sensitivity and false positive rates.

Table 6. Optimal Nomination Cutoffs by Nomination Validity 
and Maximum Tolerable Decrease in Relative Sensitivity.

Maximum tolerable decrease in relative sensitivity

NV .02 .05 .10 .15 .20 .30 .40 .50

.30 — — 25.1 33.1 40.2 52.2 62.4 71.2

.35 — 18.3 28.8 37.2 44.3 56.2 66.0 74.3

.40 — 21.8 32.9 41.4 48.6 60.2 69.5 77.2

.45 — 25.7 37.3 45.9 53.0 64.1 72.8 79.9

.50 18.9 30.1 42.1 50.6 57.4 68.0 76.0 82.4

.55 23.3 35.1 47.1 55.4 61.9 71.7 79.0 84.7

.60 28.4 40.6 52.4 60.3 66.3 75.2 81.7 86.7

.65 34.3 46.6 57.8 65.2 70.6 78.6 84.3 88.6

.70 41.1 53.0 63.4 70.0 74.8 81.7 86.6 90.3

.75 48.7 59.7 68.9 74.6 78.7 84.5 88.6 91.7

.80 57.0 66.6 74.4 79.1 82.4 87.2 90.5 93.0

.85 65.8 73.5 79.6 83.3 85.8 89.5 92.1 94.1

.90 75.0 80.4 84.6 87.1 89.0 91.6 93.5 94.9

.95 84.6 87.2 89.4 90.7 91.7 93.3 94.5 95.6

Note. NV = nomination validity. Values in the table are the maximum 
allowable nomination cutoff percentile required to achieve the desired 
decrease in relative system sensitivity (relative to an identification system 
with no screener) and are also plotted in Figure 8; Assumes nomination 
reliability = .90, test reliability = .95, test cutoff = 90th percentile; Missing 
values indicate that no solution existed within the search space, which 
began at a minimum nomination cutoff of z = −1.0 (15.9th percentile).
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the confirmatory assessment(s) and should be 
asked to nominate students accordingly. These 
two phases must align as closely as possible.

b. Formal nomination instruments should be 
selected based on the degree to which the scores 
they produce are correlated with scores in the 
confirmatory assessment. Strong phase-I to con-
firmatory alignment is key.

2. Select appropriate nomination cutoffs based on the 
desired compromise between sensitivity and assess-
ment cost (see Table 6 and Figure 8). For informal 
teacher nominations, teachers may frequently need to 
be instructed to nominate all children in the class that 
are above average rather than perceived to be poten-
tially in the “gifted range” in order to achieve the 
required low cutoff. In general, we believe nomina-
tion/screening cutoffs need to be lowered.

3. Consider abolishing the two-stage system com-
pletely. Testing all students with simple and (rela-
tively) lower-quality assessments will almost always 
result in better system sensitivity than two-stage sys-
tems in which a poor nomination process is followed 
by elaborate, expensive, and high-quality testing.

Solution 1a has been suggested many times by researchers 
examining teachers’ recommendations and beliefs about 

giftedness (i.e., Harradine, Coleman, & Winn, 2014; 
Michael-Chadwell, 2011; Neumeister et al., 2007). It is a 
generally accepted fact that classroom teachers would bene-
fit from more training in gifted education. Solution 1b may 
encounter some debate by those individuals who believe that 
teachers are able to provide information about children that 
is distinct from that measured by standardized tests. Foreman 
and Gubbins (2015) found evidence that teachers can make a 
distinct contribution to identification when teachers are 
asked to cast a wide net, such as the top 25% of the class. 
This research supports Solution 2 in which teachers nomi-
nate a larger percentage of their students for further assess-
ment. Solution 3 is likely to be rejected by many school 
districts as it seems to go against the desire to identify a wide 
range of gifted students, but the point is that a two-stage sys-
tem with a poor nomination phase is restricting, not diversi-
fying the population of students identified as gifted.

In closing, the use of nomination stages in gifted program 
identification can result in a stunningly high false negative 
rate unless the process is designed very carefully and with a 
focus on the psychometrics described throughout this article. 
The solutions (as described above) are simple: increase the 
validity of the nomination stage and/or lower the nomination 
cutoff. That said, increasing the overall system validity may 
be challenging given the constraints of modern psychoeduca-
tional assessment. Lowering the nomination cutoff logically 

Figure 8. Optimal nomination cutoffs by nomination validity and desired system sensitivity.
Note. Assumes nomination reliability = .90, test reliability = .95, and test cutoff = 90th percentile. Each plotted line displays the maximum allowable 
nomination cutoff for each level of nomination validity that preserves the integrated system sensitivity (relative to a system with no screener) at the 
desired level. Plotted values appear in Table 6.
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implies that more students will require testing using the con-
firmatory measures and therefore increased assessment costs 
for schools. However, perhaps this is not as much of a prob-
lem as might be initially assumed since in many cases the 
per-form cost of popular teacher nomination instruments is 
roughly equivalent to the per-form cost of some popular 
group ability tests. These parallels are complicated by the fact 
that many such tests involve software, scoring manuals, and 
so on, and as such the price comparison is not a simple one. 
However, in such cases where the confirmation assessment is 
only marginally more expensive than a quality teacher nomi-
nation or screening phase, abolishing the nomination stage 
completely is likely to be the best policy. What can certainly 
be said from the perspective of this work is that if the goal is 
to identify a particular group (say the top 2%, 5%, or 10% in 
a particular domain) because educators have reason to believe 
those students need specialized services, then steps need to be 
taken to determine what will happen when this goes wrong 
(due to measurement error). In other words, what will be done 
to respond to the inevitable false negatives that will result? 
What additional measures, procedures, programs, or identifi-
cation system modifications need to be implemented or 
undertaken in order to make sure what all students who have 
a need for a particular service receive it? As we have outlined 

above, commonly-implemented practices in gifted education 
create alarmingly large numbers of false negatives, which not 
only degrades the internal consistency and integrity of gifted 
education services, but results in large numbers of students 
failing to receive needed educational intervention.

The authors of this article are on record in opposition to a 
model of gifted education which begins with an attempt to 
“identify the gifted,” because we believe that the usual con-
ception of giftedness as a trait of individuals, with stable 
manifestation across academic domains, lifespan, and educa-
tional arrangements (cf., Peters et al., 2014), is not educa-
tionally useful though it is scientifically interesting. Indeed, 
the prominence that the identification process receives in 
gifted education strikes us as misguided and counterproduc-
tive especially in light of the results presented in this article. 
Regardless of our position, however, we recognize the domi-
nance of the current paradigm. Given that the practice of 
gifted education, as widely implemented, begins with an 
identification process in which fine distinctions of true abil-
ity, achievement, or creativity are held to be meaningful, in 
this article we use quantitative techniques to ask, “how well 
do these identification systems work?” Our answer, briefly 
summarized, is “probably not very well.” We leave critique 
of the system itself and its goals to other venues.

Appendix

R Script for Calculations
### You must install the mnormt library for this script to work ###

library(mnormt)

### These values should be changed as desired ###

tau <- 1.28 # the confirmatory test cutoff is z=1.28 (90th percentile)
nu <- 1.28 # nomination cutoff is also at z=1.28 (90th percentile)

relyc <- .95 # confirmatory test reliability is 0.95
relyn <- .90 # nomination reliability is 0.90

r <- 0.70 # nomination validity coefficient

### Do not change code beyond this point ###

mean <- c(0,0,0,0) # mean vector is all zeros

### Creates the covariance matrix (eqn 4) ###
# (The order of variables is nomination true score, nomination observed score,
# confirmatory test true score, and confirmatory test observed score)

cov <- matrix(c(1, sqrt(relyn), r/sqrt(relyn*relyc), r/sqrt(relyn),
          sqrt(relyn), 1, r/sqrt(relyc), r,
          r/sqrt(relyn*relyc), r/sqrt(relyc), 1, sqrt(relyc),
          r/sqrt(relyn), r, sqrt(relyc), 1), nrow=4, ncol=4)

# Calculate sensitivity (eqn 5). Note that infinities are replaced by
# +/- 5 to stabilize the numerical integration
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sensitivity <- sadmvn(lower=c(-5, nu, tau, tau), upper=c(5,5,5,5), mean=mean, 
varcov=cov) / sadmvn(lower=c(-5, -5, tau, -5), upper=c(5,5,5,5), mean=mean, varcov=cov)

# Calculate incorrect identification rate (eqn 6)

incorrectid <- sadmvn(lower=c(-5, nu, -5, tau), upper=c(5, 5, tau, 5), mean=mean, 
varcov=cov) / sadmvn(lower=c(-5, nu, -5, tau), upper=c(5, 5, 5, 5), mean=mean, 
varcov=cov)

# Calculate positive predictive value (eqn 7)

PPV <- 1 - incorrectid[[1]]

# Calculate proportion identified (eqn 8)

proportionid <- sadmvn(lower=c(-5, nu, -5, tau), upper=c(5, 5, 5, 5), mean=mean, 
varcov=cov)

# Print results to screen
sensitivity[[1]]
incorrectid[[1]]
PPV
proportionid[[1]]
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Notes
1. Although we are using many references to medical practices 

and research in this article, we hope it is obvious that we do not 
see “giftedness” or the need for gifted or advanced academic 
services as a parallel for any kind of medical disease. Instead, 
we simply seek to learn from practices used in other fields in 
order to help assure more children receive appropriate educa-
tional services.

2. By “truly” gifted student we mean a student who actually does 
meet the standards specified by the school or school district, 
regardless of whether or not that student has been identified 
as such. We contrast this with the colloquial and unfortunate 
usage of the term “truly gifted” to indicate students of excep-
tionally high ability.
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