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Abstract
Rigidity of thought is considered a main characteristic of persons with Asperger syndrome (AS). 
This rigidity may explain the poor comprehension of unusual semantic relations, frequently 
exhibited by persons with AS. Research indicates that such deficiency is related to altered mental 
lexicon organization, but has never been directly examined. The present study used computational 
network science tools to compare the mental lexicon structure of persons with AS and matched 
controls. Persons with AS and matched controls generated free associations, and network tools 
were used to extract and compare the mental lexicon structure of the two groups. The analysis 
revealed that persons with AS exhibit a hyper-modular semantic organization: their mental lexicon 
is more compartmentalized compared to matched controls. We argue that this hyper-modularity 
may be related to the rigidity of thought which characterizes persons with AS and discuss the 
clinical and more general cognitive implications of our findings.
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1 Introduction

Persons with Asperger syndrome (AS) (according to the DSM-IV) have impairments in social 
interaction and flexibility of thinking. While they exhibit intact formal language (syntax, morphol-
ogy, phonology) and general learning abilities, they express a deficit in high level non-literal 
aspects of linguistic processing (Boucher, 2003; Gernsbacher & Pripas-Kapit, 2012; Hermelin & 
O’Connor, 1970; Minshew, Goldstein, & Siegel, 1997). Extensive research has shown that persons 
with AS show difficulty in understanding irony (Martin & McDonald, 2004), semantic ambiguity 
(Le Sourn-Bissaoui, Caillies, Gierski, & Motte, 2011), humor (Emerich, Creaghead, Grether, 
Murray, & Grasha, 2003; Samson & Hegenloh, 2010), context-related linguistic interpretations 
(Jolliffe & Baron-Cohen, 1999) and figurative language (Gillberg & Gillberg, 1989; Gold & Faust, 
2010, 2012; Gold, Faust, & Goldstein, 2010). To date, the cause of this deficit is still unclear. 
However, it is clear that it involves difficulties in semantic processing (Boucher, 2012; Hobson, 
2012). This apparent inflexibility in thought and processing of creative aspects of language is often 
referred to as concrete or rigidity of thought (Hobson, 2012).

Attempting to explain the difficulties in processing figurative language typically exhibited by 
persons with AS, Gold and Faust (2012) proposed an extension to Baron-Cohen’s empathizing–
systemizing theory (Baron-Cohen, 2009). This extension argues that in the language domain,  
conventional language processing is rule-based and thus considered as the “systemized” part of 
semantic processing, which remains intact in persons with AS. Figurative language processing, on 
the other hand, involves some degree of semantic rule-violation strategies. These strategies involve 
the ability to violate conventional dominant meanings and connect remote associations into a new 
and appropriate linguistic product, also related to creative ability (Benedek, Konen, & Neubauer, 
2012; Gold, Faust, & Ben-Artzi, 2011; Mednick, 1962). As such, the authors argue that figurative 
processing can be considered similar to the “empathized” system, which is much less rule-based 
and considered to be disrupted in persons with AS. This disrupted flexible ability in breaking away 
from a strict rule-based semantic system, as suggested by these authors, may explain the rigidity of 
thought expressed in persons with AS and, as a result, their specific difficulties in processing 
aspects of language that require some degree of semantic rule violation. Nevertheless, to date, this 
perspective has not been directly empirically investigated. The present study applied computa-
tional network tools to investigate the structure of the mental lexicon of persons with AS compared 
to a group of matched controls (MC). This was done in order to examine whether differences in the 
structure of the mental lexicon may shed quantitative light on the rigidity of thought expressed by 
persons with AS. To the best of our knowledge, this is the first network research conducted on the 
semantic organization of this population.

Previous research conducted on autistic persons has hinted at the deficit they experience in 
breaking apart from a rule-based language system. Boucher (1988) investigated the verbal fluency 
ability of high functioning autistic children compared to MCs. In this research, participants had  
to generate as many words as they could think of either to a semantically well-defined category 
(i.e., animals) or simply generate miscellaneous words. Results showed that while high functioning 
autistic children performed as well as the controls on the semantic categories task, they performed 
significantly worse than the controls on the miscellaneous word generation task. The poor  
performance exhibited by the autistic children in the undefined task may reflect difficulty with 
unstructured -non rule based -verbal tasks. Similarly, Turner (1999) examined the ability of autistic 
persons compared with a group of learning disabled persons to generate novel ideas, via three  
different fluency tasks–verbal (phonological and semantic), ideational and design (for a full 
description, see Turner, 1999). This research found that autistic persons generated a significantly 
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lower number of responses in the ideational tasks compared to the group of learning disabled per-
sons. Furthermore, autistic persons generated significantly fewer novel responses. Craig and 
Baron-Cohen (1999) examined the creative abilities of children with autism, children with AS, and 
typically developing children. The authors found that both clinical groups tended to generate fewer 
novel ideas. Furthermore, these two groups generated more reality based suggestions for what 
ambiguous shapes could be, compared to the control group. The authors therefore concluded that 
autism is related to deficiency in imaginative ability.

Overall, the above findings exemplify the difficulties persons with autism have in generating new 
ideas, in both creative and verbal fluency tasks. These studies may be explained in terms of the 
organization of their mental lexicon. This difference in organization could underlie their deficit in 
flexibility of thought, which may have a negative effect on their abilities to process figurative lan-
guage (Boucher, 1988; Craig & Baron-Cohen, 1999; Turner, 1999). Yet, this difference in organiza-
tion does not seem to disrupt substantive category structure (Boucher, 1988). Thus, investigating the 
difference in the organization of semantic memory of persons with AS compared to a group of MC 
may shed new light on the nature of cognitive and linguistic deficits in persons with AS.

Semantic memory is the system of human memory that stores concepts and facts, regardless of 
time or context. In a more meticulous definition, semantic memory is responsible for the storage of 
semantic categories and of natural and artificial concepts (Budson & Price, 2005; McRae & Jones, 
2013; Patterson, Nestor, & Rogers, 2007). However, the way in which semantic memory is organ-
ized into categories and subcategories remains an open question (Jones, Willits, & Dennis, in press; 
Rogers, 2008). Recently, a growing amount of research in neurocognitive domains is being con-
ducted through the use of computational network science tools. Network science is based on math-
ematical graph theory, in which networks represent complex systems (such as the mental lexicon) 
via a set of nodes and links connecting them (for an extensive recent review, see Baronchelli, 
Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013). The nodes in such networks rep-
resent the basic unit of the system (i.e., concepts) and the links signify the relations between them 
(such as semantic relatedness; Boccaletti, Latora, Moreno, Chavez, & Hwang, 2006; Borge-
Holthoefer & Arenas, 2010). Of the various network models developed in network science theory, 
the network model that has been widely used to examine complex systems is the small world net-
work model (SWN) (Milgram, 1967; Watts & Strogatz, 1998). This model has successfully 
described a wide range of sociological, technological, biological and economical networks 
(Boccaletti et al., 2006; Bransburg-Zabary et al., 2013; Cohen & Havlin, 2010; Kenett et al., 2010; 
Newman, 2010). Two main characteristics of SWN are the networks clustering coefficient and its 
average shortest path length. The clustering coefficient (CC) refers to the probability that two 
neighbors (a neighbor is a node i that is connected through an edge to node j) of a node will them-
selves be neighbors. The average shortest path length (ASPL) refers to the average shortest number 
of steps (nodes being traversed) needed to be taken between any two pairs of nodes. A related 
structural property of networks examined is the network diameter (D), which represents the longest 
path in the network. Thus, the diameter is related to the spread of the network, which has been 
shown to be important in cognitive systems (i.e., Kenett, Anaki, & Faust, 2014). A SWN is charac-
terized by having a large CC and a short ASPL.

At the cognitive level, the application of network science tools is developing, mainly to investigate 
complex systems of language and memory structure (Baronchelli et al., 2013; Borge-Holthoefer & 
Arenas, 2010; Chan & Vitevitch, 2010; De Deyne, Kenett, Anaki, Faust, & Navarro, in press; 
Vitevitch, 2008; Vitevitch, Chan, & Goldstein, 2014; Vitevitch, Chan, & Roodenrys, 2012). In the 
linguistic domain, lexicons of different languages display SWN characteristics, considered to be a 
fundamental principle in lexical organization (Borge-Holthoefer & Arenas, 2010; De Deyne & 
Storms, 2008; Kenett, Kenett, Ben-Jacob, & Faust, 2011; Steyvers & Tenenbaum, 2005). Network 
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research has also been recently used to investigate individual differences in creative ability. Such 
research has shown how the semantic network of high creative persons is less structured and more 
flexible than the network of low creative persons (Kenett, Anaki, et al., 2014). This higher flexibil-
ity and lower structure of their mental lexicons allows higher creative persons to generate creative 
ideas (Mednick, 1962; Schilling, 2005). Finally, clinical research using network science tools to 
examine deficits at the cognitive level in clinical populations is beginning to emerge. Such research 
examines the mental lexicon organization of clinical populations suffering from speech, language 
and thought disorders and provides novel insights into the nature of their deficiencies (i.e., Beckage, 
Smith, & Hills, 2011; Cabana, Valle-Lisboa, Elvevåg, & Mizraji, 2011; Holshausen, Harvey, 
Elvevåg, Foltz, & Bowie, 2014; Kenett et al., 2013; Lerner, Ogrocki, & Thomas, 2009; Mota et al., 
2012; Voorspoels et al., 2014). Currently, the research conducted on autism using network science 
focuses on the analysis of brain networks (Barttfeld et al., 2011, 2012; Rudie et al., 2013). Although 
prior behavioral research has indicated altered memory organization in persons with AS (Bowler, 
Gaigg, & Gardiner, 2008, 2009; Poirier, Martin, Gaigg, & Bowler, 2011), to the best of our knowl-
edge, network research has not been conducted on the cognitive level of persons with autism or AS. 
Such research has great value, as it can provide a quantitative method to examine the cognitive 
difficulties exhibited by this population, such as their rigidity of thought.

Recently, Faust and Kenett (2014) proposed a novel theory which relates lexicon structure to 
typical and atypical semantic processing. This theory proposes a cognitive continuum of lexicon 
structures, ranging from extremely rigid to extremely chaotic lexicon structures. According to this 
theory, efficient semantic processing is achieved via a balance between rigid structured semantic 
processing and more chaotic, flexible semantic processing (Faust & Kenett, 2014). On one extreme 
of this continuum lies chaotic, unstructured lexicon networks, such as those exhibited in persons 
with schizophrenia (Zeev-Wolf, Goldstein, Levkovitz, & Faust, 2014). On the other extreme of this 
continuum lies rigid, structured lexicon networks. Such lexicon structure is overly structured, 
allowing efficient ordered, rule-based, structured lexical processing. However, such a lexicon 
structure is extremely inflexible, greatly inhibiting the ability to create novel combinations and 
break apart from rule-based processing. The authors promote the use of network science methods 
to examine such structural lexicon differences between typical and atypical populations. One such 
method is via the investigation of the community structure of the mental lexicon.

Community structure research examines how a complex system, comprised of many nodes and 
edges, break apart (or partition) into smaller sub-networks (Fortunato, 2010). This area of research 
has been promoted, to a great extent, by Newman (2006), who introduced the notion of modularity 
(Q). The modularity measure is a statistical measure that quantifies how much a network partitions 
into sub-communities. The larger the modularity measure is, the more the network is comprised 
from sub-communities (Newman, 2006). The notion of modularity is extensively investigated at 
the neural brain organization level to examine neuronal connectivity and functional networks 
(Bullmore & Sporns, 2012; Hilgetag & Hütt, 2014; Meunier, Lambiotte, & Bullmore, 2010). 
However, a limited amount of research has been conducted using this quantitative measure in the 
study of the mental lexicon (Kenett, Anaki, et al., 2014; Siew, 2013). Furthermore, while previous 
studies have shown the effect of modular disruption in regard to clinical populations (Stam & van 
Straaten, 2012), research on possible negative aspects of a network being extremely, or hyper, 
modular is lacking (Arenas, Borge-Holthoefer, & Moreno, 2012; Shai et al., 2014). This hyper-
modularity, resulting from extreme structuring of the networks into smaller sub-parts, may hinder 
the flexibility of the network, thus increasing its rigidity. According to the theory proposed by 
Faust and Kenett (2014), persons with AS may have a hyper-modular mental lexicon organization 
compared to the lexicon of MCs.
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To examine this theory, we used the approach developed by Kenett et al. (2011) to represent and 
compare the semantic networks of both groups. This approach defines connections between con-
cepts in the mental lexicon by the similarity of association responses generated to these concepts, 
or alternatively, as the overlap of “association clouds” (Kenett et al., 2011). This notion is in accord 
with classic cognitive theory on the organization of semantic memory (Collins & Loftus, 1975), 
and thus differs from standard methods of extracting semantic similarity based on standard statisti-
cal properties (Kenett et al., 2011). Studying the mental lexicon with the use of complex network 
methodology, based on free association responses, poses great merit. This is due to the general 
agreement, from a psychological point of view, that associations are one of the organizing princi-
ples of semantic memory (Borge-Holthoefer & Arenas, 2010; De Deyne et al., in press). Thus, this 
approach can be used to examine the organization of the mental lexicon in persons with AS com-
pared to MCs and to quantitatively examine the nature of their rigidity of thought. This was 
achieved via two major steps: first, both AS and MC groups generated free association responses 
to 96 cue words. Second, the semantic networks of both groups were calculated based on the over-
lap of association responses (“associative clouds”) between the cue words. Finally, we quantita-
tively analyzed and compared the two networks to examine any possible differences between them. 
We hypothesized that the AS network would be more modular than the MC network (higher Q). 
Furthermore, in accordance with Gold and Faust (2012), we hypothesized that the AS group would 
generate a smaller number of unique associative responses (“associative clouds”) as compared to 
the MC group.

2 Materials and methods

2.1 Participants

Nineteen individuals with Asperger syndrome participated in this study (12 men, 7 women;  
average age in years = 26, SD = 5.54). In line with previous research (Gold & Faust, 2010; Gold  
et al., 2010), diagnosis of persons with AS was carried out by an independent psychiatrist with 
extensive experience in this area, following DSM-IV criteria (American Psychiatric Association, 
1994). To confirm this diagnosis, they completed the autism-spectrum quotient (AQ) (Baron-
Cohen, Wheelwright, Skinner, Martin, & Clubley, 2001). All participants scored above 26, which 
has been suggested in two separate studies as a more sensitive cut-off point for this quotient (Kurita, 
Koyama, & Osada, 2005; Woodbury-Smith, Robinson, Wheelwright, & Baron-Cohen, 2005), and 
fits the cut-off point distinguishing the general Israeli population and Israeli persons diagnosed on 
the autistic spectrum (Golan, Gold, & Fridenzon, 2009). In addition, according to parental report, 
all participants with AS had no significant delay in language development. Parents were asked to 
report at what age major language developmental milestones were reached, for both expression and 
comprehension. Specifically, regarding expressive language development they were asked at what 
age first words were acquired and at what age two words were combined. Regarding language 
comprehension they were asked to indicate whether as a child their son/daughter could understand 
simple questions and follow simple directions. Participants who suffered from co-morbid mental 
illness, reading disabilities, or substance abuse were excluded. Substance abuse and comorbidities 
were assessed as exclusion criteria by the psychiatrist who conducted the diagnostic procedure 
(excluding six participants). Reading disability was assessed as exclusion criteria by asking partici-
pants whether they were ever formally diagnosed as having a reading disability. In addition, par-
ticipants were asked to subjectively report if they encounter reading difficulties. Participants with 
AS had an average verbal IQ score (mean IQ = 103, STD = 16), which was shown in a previous 
study to resemble that of a similar sample of matched comparable controls (Gold et al., 2010). The 
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research was conducted prior to the release of the DSM-V, thus participants were diagnosed accord-
ing to the DSM-IV. The strict inclusion criteria resulted in a relatively small AS group sample size.

Fifty individuals participated as MCs (33 men, 17 women; average age in years = 25.2, SD = 
3.03). All control participants were psychology students at Bar-Ilan University. Due to the long 
experimental procedure, IQ tests were not administered to controls. We assumed the two groups 
were IQ-matched based on the previous study mentioned above (Gold et al., 2010). In that previous 
study, a similar group of students (also from the psychology program) served as controls, and for 
them IQs were obtained and found to match those of the AS group. All participants were native 
Hebrew speakers who had completed at least 12 years of formal education, and were rewarded 
with 70 ILS or with partial fulfillment of their academic requirements.

2.2 Methods

2.2.1 Free association task.  The free association task is based on the method used in Rubinstein, 
Anaki, Henik, Drori, and Farn (2005). Participants are presented with a cue word and have one 
minute to generate as many associative responses they could for that cue word. This method differs 
from classical association tasks, where subjects are only required to generate the first associative 
response to a cue word (Nelson, McEvoy, & Schreiber, 2004). This method is superior to previous 
methods in collecting association norms, as it exposes a greater part of the mental lexicon, helping 
to statistically strengthen significant associations with cue words within the network (De Deyne, 
Navarro, & Storms, 2013; Kenett et al., 2011). The duration of time for the generation of associa-
tive responses per cue word was chosen to be one minute. This was chosen based on the procedure 
conducted by Rubinstein et al. (2005). Some objections have been raised that this duration is too 
short for such tasks (Wixted & Rohrer, 1994). However, these objections focus on free recall tasks, 
which demand structured retrieval from memory. The continuous free association paradigm does 
not pose any constraints on retrieval. Furthermore, Beaty and Silvia (2012) examined the trajectory 
of numbers of responses in a 10-minute divergent thinking task. The authors show that the majority 
of responses are generated within the first minute of responses.

Persons with AS exhibit a strong reliance on concrete nouns combined with difficulties in pro-
cessing abstract words (Gold & Faust, 2012). Therefore, we controlled for the concreteness of the 
cue words chosen for the free association task. The construction of the list of cue words used in this 
study involved several steps. First, words were drawn from a list of categorical norms gathered by 
Henik and Kaplan (2005), who asked their participants to generate words in a verbal fluency task. 
The words were generated based on 36 categories (e.g., fruits, trees, countries). The top four high 
frequency words from each category were selected. These high frequency words were then tested 
for their degree of concreteness. Ten independent persons were selected to judge the level of con-
creteness of each of these words. These judges were age matched to the AS group and did not 
participate in the experiment. Each word was judged for its level of concreteness on a 7-point 
Likert scale, in which 1 represented low concreteness (i.e., abstract) and 7 represented high con-
creteness (i.e., concrete). Based on this pretest, only words with an average score of 5 and above 
on the concreteness scale were selected. The final word pool thus consisted of 96 words from 24 
categories.

2.2.2 Association correlation networks.  The free association data were analyzed using the approach 
developed by Kenett et al. (2011). In these association correlation networks, nodes represent the 
cue words and edges represent the association correlation between words or the similarity of asso-
ciations generated by a pair of cue words. The association correlation networks were constructed 
by the following four steps.
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First, raw association matrices were separately constructed for the associative responses of the 
two groups. These matrices were constructed such that each row was an associative response gen-
erated by any of the participants to any of the cue words and each column was a different cue word. 
In these raw association matrices, each cell contains the value “1,” indicating that a specific partici-
pant generated a specific associative response i to a cue word j.

Second, we conducted a pre-processing stage. The aim of this stage was to standardize the asso-
ciative responses across participants (by converting plural into singular, i.e., fruits to fruit) and to 
eliminate any possible typing errors (i.e., aplle to apple). Next, identical associative responses were 
merged using the Minitab software (www.minitab.com). This resulted in unique association matri-
ces for both groups. In these unique association matrices, each row i is a unique associative 
response given by the entire sample, each column j is a different cue word, and a cell contains the 
number of participants generating a unique association response i to cue word j.

Third, the association correlation matrix is computed from the unique association matrices. The 
correlations between the cue word associations profiles (the associative responses given to the cue 
words by all participants), are calculated by Pearson’s correlation. This correlation is based on the 
contribution of two parameters–the extent of similar associative responses given to a pair of cue 
words and the number of participants generating these similar associative responses to these cue 
words. Thus, the more similar associations generated and the larger number of participants generat-
ing these association responses to a pair of cue words, the higher the association correlation 
between this pair of words is (see Kenett et al., 2011 for a full description).

For example, if a pair of cue words are cat and dog we examine the overlap of associative 
responses for these two cue words. A possible overlap of associative responses given to both the 
cue word cat and the cue word dog can be pet (given by a number of participants to cat and b 
number of participants to dog), home (given by c number of participants to cat and d number of 
participants to dog), friend (given by e number of participants to cat and f number of participants 
to dog) and so on. Then, each of these association responses given to both cue words and the num-
ber of participants generating these associative responses for both cue words contributes to the 
strength of the association correlation between these cue words. The association correlation matrix 
can be studied in terms of an adjacency (connectivity) matrix of a weighted, undirected network. 
In this view, each cue word is a node in the network, and an edge (link) between two nodes (cue 
words) is the correlation between these two nodes.

Fourth, we used a filter to remove spurious correlations. Since most of the edges have small 
values (weak correlations), the relevant information about the network can be obscured. Several 
methods have been developed to overcome this obstacle by constructing from the complete net-
work a sub-graph that captures the most relevant information embedded in the original network. 
Here we use the planar maximally filtered graph method (PMFG) (Tumminello, Aste, Di Matteo, 
& Mantegna, 2005). The resulting sub-graph of this method includes all of the nodes in the net-
work whose edges represent the most relevant association correlations. To construct the planar 
graph, the N(N–1)/2 values of the correlation matrix are ordered in decreasing rank. The method 
starts from the pair of nodes i and j with the highest correlation and draws a link between them. 
This reiterates according to correlation strength where in each iteration a link is added, if and only 
if the resulting graph is still planar, that is, can be drawn on the surface of a sphere without links 
crossing (Tumminello et al., 2005). This results in a filtered sub-graph after eliminating possible 
spurious correlations. Since we are interested in the structure of the network, we binarized the 
network (by converting all edges to uniform weight = 1) and analyzed the network as an unweighted 
undirected network.

Finally, it is important to note that this method can only examine group sample networks and is 
not sensitive to the individual differences of specific participants. When applying this method to 
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compare two networks (for example, AS versus MC semantic networks), this method focuses on 
how the responses generated by all cue words by all participants in one group differ from those of 
the second group. Thus, if the same cue words are presented to both groups in a free association 
task, this computational method analyzes the general difference of the network structure arising 
from each complete sample.

2.2.3 Network analysis.  The network parameters, calculated with the brain connectivity toolbox for 
Matlab (Rubinov & Sporns, 2010), were the following: the CC, the ASPL and the network’s diameter 
(D). Furthermore, in order to examine the network’s CC and ASPL, a random network was created 
with the same number of nodes and edges. For this random network, we calculated its clustering coef-
ficient (CCrand) and its average shortest path length (ASPLrand). To examine the modularity of each 
network, we made use of Newman’s modularity measure (Newman, 2006) to investigate how each 
network divides into sub-clusters of words, by calculating its modularity index (Q).

Statistical hypothesis testing methods to compare between networks is currently lacking 
(Moreno & Neville, 2013). Such methods are required when conducting empirical network research 
to determine whether two (or more) networks are significantly different from each other or not 
(null hypothesis). This lack of network comparison hypothesis testing is mainly due to difficulties 
in estimating or collecting a large sample of empirical networks and due to few statistical methods 
that compare between networks (see Moreno & Neville, 2013). To statistically analyze our find-
ings, we used three complementing approaches. First, we simulated random networks to determine 
that the network measures calculated for both networks did not result from a random network null 
hypothesis. To this end, we generated a large sample of Erdös–Rényi random networks with a fixed 
edge probability (Boccaletti et al., 2006) and compared the network measures to the values result-
ing from the simulated random distributions for each measure. The Erdös–Rényi random network 
model was chosen as it does not make any assumptions regarding the structure of the network 
(Erdös & Rényi, 1960).

Second, we examined whether differences between the AS and MC network measures were 
statistically significant by applying the bootstrap method (Efron, 1979) to simulate partial random 
AS and MC networks and compared these networks (Kenett et al., 2013; Kenett, Anaki, et al., 
2014). This procedure had a twofold rationale: (1) if the two networks truly differ from each other, 
then any sub-network consisting of the same nodes in both networks should also be different; and 
(2) the bootstrap method enables the generation of many simulated partial AS and MC networks, 
allowing for statistical examination of the difference between the two networks. In order to con-
duct the bootstrapping procedure, half of the cue words (nodes) were randomly chosen. Then par-
tial AS and MC networks were constructed separately using these random nodes, based on the 
entire sample. This method is known as the without replacement bootstrap (Bertail, 1997; Politis 
& Romano, 1994; Shao, 2003). Finally, for each partial AS and MC network, CC, ASPL, D and Q 
measures were computed. This procedure was simulated with 1000 realizations.

Third, we used the non-parametric bootstrap method to conduct sample-matched analysis 
(Efron, 1979; Shalizi, 2010). As the association correlation matrix is constructed from the associa-
tions generated by the entire sample, sample size might affect the association correlations which 
determine the links in the network. As sample size grows, the number of associations generated to 
cue words over the entire sample grows. As such, this can flesh out more of the mental lexicon, by 
strengthening correlations between cue words and “revealing” links between nodes in the network. 
However, when comparing groups with unequal sample size, such effects of the “association 
clouds” on the association correlation matrix may provide an alternative explanation of the results. 
As individual semantic networks of participants consistently exhibit SWN properties (Morais, 
Olsson, & Schooler, 2013), we can assume that such a possible artifact is not due to individual dif-
ferences within the MC sample. Since the MC sample is more than double the size of the AS group 
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(50 MC participants compared to 19 AS participants), we used the bootstrap method (Efron, 1979) 
to create bootstrapped-MC raw association matrices matched in size to the AS raw association 
matrix. This method is known as the m out of n bootstrap (Bickel, Gotze, & van Zwet, 1997; Bickel 
& Sakov, 2008). This was done by randomly choosing a row i from the original MC raw associa-
tion matrix, with equal probability for every row and with replacement (the same row could be 
chosen more than once). The result of this process was a new bootstrapped-MC raw association 
matrix which matched the size of the AS raw association matrix (4821 rows × 96 columns). The 
associative network of this bootstrapped size-matched MC association matrix was computed and 
its network measures were calculated. This process was reiterated 1000 times and resulted in a 
referenced empirical bootstrapped distribution (Kenett, Zack, & Amberti, 2014) for each network 
measure examined in this research (CC, ASPL, D, and Q). These reference distributions allowed 
us to examine the statistical probability of the AS network measures’ value falling within the refer-
ence simulated distribution for each statistical measure separately, thus controlling for possible 
sample size contamination.

Finally, we analyzed the difference in the number of unique associations generated (“associa-
tion clouds”) by the two groups. If the AS group’s semantic rigidity is related to their mental lexi-
con organization and its lack of flexibility, we would expect that their ability to generate associative 
responses to cue words would be significantly lower than that of the MC group. As sample size can 
affect this analysis, we also examined the bootstrapped-MC average number of associations gener-
ated for every cue word. Thus, we conducted ANOVA and correlation analyses on the mean num-
ber of unique associations generated by the three groups (AS, MC, bootstrapped-MC), averaged 
over cue words and participants.

2.3 Procedure

The cue words were presented to participants via Microsoft PowerPoint slide software (www.
microsoft.com) on a cathode ray tube screen, positioned 50 cm from the participant. Each cue word 
was presented on a separate slide, in a large font over a white background. The slideshow began 
with four slides containing written instructions and examples. The experimenter went through the 
written instructions with the participants, added oral explanations and encouraged questions. The 
experiment began only after it was clear that the participants understood the task. Participants were 
given a booklet containing a chart with word numbers and space to write the associations they 
came up with. They were asked to fill in their associations in the box corresponding to the word 
number appearing on the slide. The slideshow was pre-programmed to run automatically so that 
each word was presented on the screen for one minute. After the word was presented for 45 sec-
onds, a short bell sound was heard and the words “15 seconds remaining” appeared on the screen 
to signal to the participants that time was almost over and to notice the following word. Once a full 
minute elapsed, the following word appeared and a soft “swoosh” sound was heard to ensure that 
participants attended to the new word. After 48 minutes (half of the experiment), the participant 
had a short break before continuing for another 48 minutes. All of the participant’s free associa-
tions were later manually coded into an Excel sheet.

3 Results

3.1 Associative network construction

We constructed the associative networks based on the steps described above. First, we coded the 
data into raw association matrices. This resulted in 12,225 (association responses) × 96 (cue words) 
for the AS group and 19,186 (association responses) × 96 (cue words) for the MC group. Next, we 
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verified that the length of the paradigm did not cause fatigue and thus confound the data. This was 
achieved by comparing the number of association responses for the first 25% of the cue words 
versus the last 25% of the cue words presented to the participants in both groups. This analysis 
found no significant differences between the number of associations generated by the first and last 
cue words in both groups.

Second, we conducted the pre-processing stage in order to create the unique association matri-
ces. This resulted in 4821 (unique association responses) × 96 (cue words) for the AS group and 
8280 (unique association responses) × 96 (cue words) for the MC group. Such a compression rate 
of 66% for the AS group and 50% for the MC group is consistent with prior applications of this 
approach (Kenett et al., 2011; Kenett, Anaki, et al., 2014). This is a result of the tendency of a 
specific associative response to be generated for a larger number of cue words by a larger portion 
of the sample. For example, the associative response tree was generated by the AS group for 44 
different cue words for a total of 152 responses. For the MC group, this associative response was 
generated for 45 cue words for a total of 483 responses. Finally, we calculated the association cor-
relation matrices for each group independently. We then used the PMFG method to filter out any 
possible spurious correlations.

3.2 Network analysis

The different SWN properties of the semantic networks of both groups were calculated and com-
pared (Table 1). To visualize the networks, we plotted the graphs using the force-directed layout of 
the Cytoscape software (Shannon et al., 2003), and in order to present the Hebrew cue words as the 
labels of the nodes, we translated them into English (Figure 1). In these 2D visualizations, nodes 
(words) are represented as circles and links between them are represented by lines. Since these 
networks are unweighted and undirected, the links merely convey symmetrical relations between 
two nodes.

Both the quantitative analysis of the calculated network measures and the qualitative examina-
tion of the networks visualization reveal differences between the AS and MC networks. The net-
work analysis revealed that the AS network had a larger ASPL and D than the MC network. This 
indicates that the AS network is more spread out than the MC network. This is evident in the net-
work visualization, whereas the AS network is much more spread out than the MC network. 
Furthermore, this analysis revealed that the AS network had a higher modularity Q value than the 
MC network. This indicates that the AS network is more modular than the MC network. This is 
evident in the network visualization, whereas the AS network breaks apart into more sub-parts than 

Table 1.  Small world network measures calculated for the Asperger syndrome (AS) and the matched 
control (MC) semantic network.

Parameter AS MC

CC 0.69 0.67
ASPL 3.95 3.66
D 9 8
CCrand 0.06 0.08
ASPLrand 2.74 2.73
Q 0.71 0.70

CC: clustering coefficient; ASPL: average shortest path length; D: diameter; CCrand: clustering coefficient of random 
graph; ASPLrand: average shortest path length of random graph; Q: modularity measure.
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the MC network. For example, in the AS network the cue word paprika is connected to its directly 
related category members (i.e., salt and oregano). In the MC network, however, the cue word 
paprika is connected to its category members but also to other cue words which are associatively 
related, such as window, apartment, roof, anemone, apple, and radish (Figure 1).

Since both networks are comprised from the same nodes, our null hypothesis is that the net-
works’ measures should not differ. To verify that the AS and MC networks do not result from null 
hypothesis random networks, we conducted the simulated random network method. This analysis 
revealed that for both AS and MC networks, all four network measures (CC, ASPL, D and Q) were 
significantly different than their simulated random measures (all ps < 0.001).

To examine the significance of the differences found between the networks, we applied the 
partial networks analysis (Bertail, 1997; Kenett, Anaki, et al., 2014). An in-house Matlab code was 
written for the partial networks procedure. This code randomly chose half of the nodes comprising 
the network. Next, AS and MC networks were constructed for this subset of nodes, based on the 
associative responses given by each group to these cue words. Network measures were computed 
for each partial network and this procedure was reiterated 1000 times. This resulted in a sample 
distribution of 1000 samples for all measures (CC, ASPL, D, and Q). An independent samples 
t-test was conducted on each network measure to test the difference between the partial networks’ 
distribution of the two groups. These analyses revealed significant differences between all of the 
network measures, in the sense that the CC, ASPL, D and Q of the partial AS network was signifi-
cantly larger than that of the partial MC network (Table 2). Thus, while these differences were 
numerically small, they were significantly different and replicated the structural differences 
revealed in the main analysis.

To control for any possible sample size contamination, we conducted the bootstrapping approach 
to generate size-matched MC networks (Bickel & Sakov, 2008; Bickel et al., 1997). An in-house 
Matlab code was written for the bootstrapped size-matched procedure. This code randomly chose, 
with replacements, 4821 rows out of the original MC raw association matrix to create a boot-
strapped size-matched MC raw association matrix. The associative network was computed from 
this matrix (as described above) and its network measures (CC, ASPL, D, and Q) were calculated. 
This process was reiterated 1000 times and a reference bootstrap distribution for each network 
measure was created. Each AS network measure value was than compared to its relevant boot-
strapped reference distribution. This provides an examination of the statistical probability of the 
AS measure value falling within its referenced bootstrapped measure distribution, controlling for 
sample size contamination (Kenett, Zack, et al., 2014). The analysis revealed that the AS modular-
ity measure Q is significantly out of range, falling to the right of the positive tail of its reference 
bootstrapped distribution (Table 3).

Table 2.  Small world network measures calculated for the partial Asperger syndrome and matched 
control semantic networks.

Parameter P-AS P-MC t-score

CC 0.69 (0.01) 0.68 (0.01) 3.87***
ASPL 3.12 (0.24) 3.08 (0.24) 4.42***
D 3.74 (0.6) 3.68 (0.6) 2.08*
Q 0.55 (0.05) 0.54 (0.03) 2.16*

Standard deviations in brackets.
CC: clustering coefficient; ASPL: average shortest path length; D: network diameter; Q: modularity measure; P-AS – 
mean partial bootstrapped Asperger syndrome networks; P-MC: mean partial bootstrapped-matched control networks. 
* p < 0.05; *** p < 0.001.
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Finally, we examined the difference in the mean number of unique association responses (“asso-
ciation clouds”) generated by the three groups (AS, MC, bootstrapped-MC). A one-way analysis of 
variance conducted on the effect of group on mean association responses per cue word revealed a 
significant main effect of group, F(2, 285) = 628.921, p < 0.01, η 2 = 0.815. A planned contrast 
revealed that this main effect is due to a significant difference between the AS group and both MC 
and bootstrapped-MC groups (all ps < 0.001; Figure 2). To exclude any possible sample size con-
tamination, we examined the difference in unique association generation between the AS group 
and the bootstrapped-MC group. A simple effect analysis (corrected for multiple comparisons 
using the Benjamini–Hochberg correction (Thissen, Steinberg, & Kuang, 2002) was conducted on 
the AS unique association responses compared to their bootstrapped-MC unique association distri-
bution for a specific cue word. This analysis revealed a significant effect for 66% of the cue words 

Table 3.  Statistical comparison of Asperger syndrome semantic network measures to size-matched 
matched controls reference distributions.

Parameter AS score SMC score z-score

CC 0.69 0.69 (0.01) 0.02
ASPL 3.95 3.92 (0.32) 0.07
D 9 8.91 (1.24) 0.07
Q 0.71 0.6 (0.05) 2.06*

Each measure is statstically compared to the 1000 sample simulated size-matched matched control reference distribu-
tion for that measure. Statistical comparison is done via a two-tailed z-score analysis. AS score: the AS network values 
for a specific measure; SMC score: mean score of the simulated size-matched matched control network measure distri-
bution (standard deviations in barckets); z-value: z-score for the AS measure value compared to the bootstrapped refer-
ence distribution for that measure; CC: clustering coefficient; ASPL: average shortest path length; D: diameter; CCrand: 
clustering coefficient of random graph. * p < 0.05.

Figure 2.  Average unique association responses of the three groups (AS, MC, bootstrapped-MC), 
averaged over cue words and participants.
X-axis: examined groups; Y-axis: mean number of unique association responses (error bars depict standard error);  
AS: Asperger syndrome group; MC: matched control group.
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(all ps < 0.01), in the sense that the AS group generated significantly fewer associative responses 
to a cue word than the bootstrapped-MC group. Finally, we conducted a correlation analysis 
between the mean number of unique associations generated for each of the cue words in the three 
groups (Table 4). This analysis revealed high significant positive correlations between the AS and 
both MC and bootstrapped-MC groups.

4 Discussion

The present study is the first network analysis of the mental lexicon structure of persons with AS, 
compared to MCs. The similarities between words based on their free association responses were 
calculated and used to construct the association correlation matrix separately for each group. These 
association correlation matrices were used to model the associative networks of both groups, thus 
representing the organization of the cue words in their mental lexicon. This analysis was conducted 
in order to investigate the rigidity of thought exhibited in persons with AS from a computational 
network approach.

Our analysis uncovered several network differences which relate to the structure of the mental 
lexicon of the two groups. This was evident in higher ASPL and D measures for the AS network, 
indicating that the AS network is more spread out than the MC network. Furthermore, the AS net-
work had a higher modularity value than the MC network, indicating that the AS network breaks 
apart into more sub-communities than the MC network. We examined these differences by simulat-
ing a large sample of partial networks constructed from subsets of nodes comprising the full net-
work (Bertail, 1997; Kenett, Anaki, et al., 2014). This partial networks analysis found significant 
differences between all network measures examined, as found in the comparison of the full net-
works. To control for any possible sample size contamination on the structure of the semantic 
networks, we used the bootstrapping method (Efron, 1979). This method was used to simulate a 
large number of size-matched MC association responses matrices, matched to the size of the AS 
association responses matrix. For each such bootstrapped size-matched MC association responses 
matrix, we computed its semantic network and calculated its network measures. We then examined 
how the values of the AS network measures fall within their specific measure distribution (Bickel 
& Sakov, 2008; Bickel et al., 1997). This analysis revealed that the modularity measure of the AS 
network was significantly different compared to its bootstrapped distribution, extremly right to the 
positive tail of the distribution. Thus, the AS modularity measure is hyper-modular compared to the 
bootstrapped size-matched MC networks and is also significantly higher in the partial networks 
analysis and larger in the full networks analysis.

Finally, we analyzed the mean number of unique association responses generated by both 
groups to the cue words. To avoid any possible sample size contamination, we also calculated the 
mean number of bootstrapped-MC unique association responses for every cue word. Therefore, we 
compared the mean number of unique associative responses, averaged over cue words and 

Table 4.  Correlation analysis of number of unique associations generated by cue words by the three 
groups (AS, MC, bootstrapped-MC).

Variables 1 2 3

1 – AS – .56*** .56***
2 – MC – 1***
3 – bootstrapped-MC –

AS: Asperger syndrome group; MC: matched control group. *** p < .001
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participants for the three groups (AS, MC, bootstrapped-MC). This was done to further examine 
whether the deficit in figurative processing (Gold & Faust, 2012) and novel generation (Turner, 
1999) typically exhibited by persons with AS may be a result of a hyper-modular mental lexicon. 
If the AS mental lexicon is hyper-modular, it might be harder for them to generate a wider array 
(larger breadth) of associative responses to a cue word, thus having a “narrower associative cloud” 
for a cue word as compared to MCs. This analysis revealed that persons with AS generate a signifi-
cantly lower number of unique association responses, even when compared to a size-matched 
bootstrapped sample. Correlation analysis between the number of unique associations generated to 
the cue words by the three groups revealed significantly high correlations between the AS and MC 
and bootstrapped-MC group. This correlation analysis provides further support for narrower  
“associative clouds” to the cue words in the AS group. In general, the AS and MC groups appear 
to have a similar trend in the breadth of associations generated by the cue words. However, the 
range of unique associations in the AS is much narrower compared to the MC group.

Taken together, our results indicate that persons with AS have a hyper-modular mental lexicon 
structure, which may disrupt associative processing and might be related to their rigidity of thought. 
How may this hyper-modular mental lexicon network organization be related to this rigidity of 
thought? Kenett et al. (2011) proposed a theoretical account which relates the network structure of 
the mental lexicon with thought processes, such as those required in creative problem solving 
(Mednick, 1962). This theory argues that when attempting to solve a creative problem, a search 
process is activated throughout the mental lexicon. Thus, the structure of the mental lexicon may 
determine the extent to which this search activation succeeds. How might this theory explain the 
rigidity of thought expressed by persons with AS? We suggest that the hyper-modular mental lexi-
con network organization may hinder their ability to break apart from a specific module in the 
network and spread into other modules. Thus, activation within a dense module might get “trapped” 
and, combined with its rapid dissipation, result in rigidity of thought. Recent work by Kenett, 
Anaki, et al. (2014) provided empirical support for this theory. The authors examined the differ-
ence in semantic networks of low and high creative individuals. This examination revealed how the 
semantic network structure of low creative individuals is more modular and spread out than that of 
high creative individuals (Kenett, Anaki, et al., 2014). Thus, the more modular the structure of the 
lexicon is, the less flexible it is. Related to this theory, Siew (2013) has recently applied a network 
community detection approach to investigate the community structure of the phonological network 
(Siew, 2013). The author describes how densely connected phonological modules “trap” spreading 
activation of phonological processing.

From a broader perspective, our work highlights the complex relation between the modularity 
of the mental lexicon and dynamical processes operating upon it (Kenett, Anaki, et al., 2014; Shai 
et al., 2014; Siew, 2013). The constraints imposed by the structure of the mental lexicon on the 
dynamical processes operating upon it may explain the dissociation persons with AS exhibit in 
processing structured compared to unstructured semantic tasks (Boucher, 1988; Turner, 1999). 
While persons with AS exhibit typical performance within a specific module in the network, their 
hyper-modular organization disrupts their ability to spread into other parts of the lexicon. This 
hypothesis may explain why persons with AS exhibit difficulties in higher order linguistic abilities 
that require access to a wide range of associations and semantic features (Faust, 2012).

Our findings are well integerated with current theories of autism. According to the empathiz-
ing–systemizing theory of autism (Baron-Cohen, 2009), autistic persons exhibit a deficit in their 
empathizing system, while preserving an intact systemized, rule-based system. According to the 
fine–coarse semantic processing model (Jung-Beeman, 2005), the left hemisphere (the specialized 
hemisphere for processing language) activates dominant, strong semantic meanings, while the 
right hemisphere non-specialized system activates a coarse, or weak, unconventional range of 
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meanings. It is through the interaction of these two systems that optimal semantic processing is 
achieved. Our finding of the hyper-modular organization of the AS semantic network suits the left 
hemisphere strategy of processing dominant, strong meanings, which we suggest is facilitated 
through the partitioning of the network into modules. This is in line with research on persons with 
autism, demonstrating a right hemisphere deficit in coarse semantic processing (Gold & Faust, 
2010). Our results are also directly related to the theory proposed by Faust and Kenett (2014), 
which relates lexicon structure to typical and atypical semantic processing. This theory proposes a 
cognitive continuum of lexicon structures, ranging from extremely rigid to extremely chaotic. Our 
findings are related to the extreme rigid end of this continuum. According to this theory, extreme 
rigid lexicon structure is characterized as overly structured and modular, allowing efficient ordered, 
rule-based, structured lexical processing. Such a structure, however, is extremely inflexible, inhib-
iting breaking away from structured, rule-based processing. Thus, our findings are directly related 
to the extreme rigid end of this semantic continuum (Faust & Kenett, 2014).

The application of network tools to study language processing in autism and particularly in AS 
may provide a novel quantitative way to further elucidate the nature of this disorder. Our research 
adds to the developing field of research which uses network science tools to investigate the mental 
lexicon and thought processes of clinical populations (i.e., Beckage et al., 2011; Cabana et al., 
2011; Holshausen et al., 2014; Kenett et al., 2013; Lerner et al., 2009; Mota et al., 2012; Voorspoels 
et al., 2014). From a clinical point of view, our findings might serve as a clinical tool by preparing 
protocols which encourage free association generation. These protocols might attenuate the hyper-
modular organization of the mental lexicon of persons with autism, thus aiding in lowering their 
rigidity of thought and possibly helping them to better process the more creative aspects of lan-
guage, including metaphors, humor, ambiguity and connotations. Furthermore, such network 
measures can be used to quantify the severity of the rigidity of thought expressed by persons with 
AS in relation to treatment methods, thus serving as a unique clinical diagnostic tool.

Alongside the contributions of this study, a few limitations to it exist. First, the network method 
used here can only represent the network of the sample, and cannot relate to individual participants. 
In order to be used in clinical applications, this method must be developed to allow the investiga-
tion of the semantic network of an individual (see Morais et al., 2013 for a novel approach to 
investigating individual semantic networks). Second, while the cue words were chosen carefully to 
control for concreteness and to be strong category representatives, these words were chosen based 
on MCs responses. While unlikely, it might be that the chosen words were less known to the AS 
sample, which resulted in fewer association responses. Thus, although both groups were controlled 
for verbal IQ, and no AS participant reported any difficulties with the cue words, future research 
should select cue words based on persons with AS norms, in order to eliminate any such contami-
nation and replicate our findings. Finally, in our research we had unequal sample sizes of the two 
groups–19 persons with AS compared to 50 MCs. As our approach is sample based, we controlled 
for any sample size contamination by using the bootstrap method to simulate sample-matched raw 
association matrices. Further research with a larger and size-matched sample will allow the replica-
tion and verification of our findings.

In summary, the work presented here is the first network analysis on the structure of the mental 
lexicon in persons with AS. This was done to investigate the rigidity of thought expressed by this 
population. We found that the mental lexicon of persons with AS is more compartmentalized and 
hyper-modular than that of MCs. We suggest that this hyper-modularity might be related to the 
rigidity of thought expressed by these persons. Our findings provide further evidence for the con-
straints the structure of the mental lexicon imposes on the dynamical processes operating upon it. 
As such, network science provides a powerful approach to shedding further light via quantitative 
means on the thought processes of typical and atypical populations.
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