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This research examined how motivation (perceived control, intrinsic motivation, and extrinsic motivation),
cognitive learning strategies (deep and surface strategies), and intelligence jointly predict long-term growth in
students’ mathematics achievement over 5 years. Using longitudinal data from six annual waves (Grades 5
through 10; Mage = 11.7 years at baseline; N = 3,530), latent growth curve modeling was employed to analyze
growth in achievement. Results showed that the initial level of achievement was strongly related to intelli-
gence, with motivation and cognitive strategies explaining additional variance. In contrast, intelligence had no
relation with the growth of achievement over years, whereas motivation and learning strategies were predic-
tors of growth. These findings highlight the importance of motivation and learning strategies in facilitating
adolescents’ development of mathematical competencies.

For decades, researchers in developmental and edu-
cational psychology have been concerned with the
determinants of academic achievement. Today,
there seems to be agreement that both motivational
and strategy variables play an important role in
explaining academic achievement (for a review, see
Robbins et al., 2004). However, although a large
portion of previous research has focused on the
relation between these variables and academic
achievement assessed at a particular time point,
fewer studies have investigated whether motiva-
tional and strategy variables predict long-term
growth in academic achievement. This is unfortunate
because one of the ultimate goals in education is to
facilitate sustainable learning (long-term intraindi-
vidual growth, i.e., change relative to current
achievement of the individual), rather than to focus
on performance attainment at one point in time.
Clearly, systematic investigation of the long-term
determinants of growth in academic achievement is
imperative. In the present research, using longitudi-
nal data from six annual waves over the adolescent
years, we examined a variety of motivational vari-
ables and cognitive strategies as predictors of both

concurrent level and long-term growth in math
achievement.

Motivation: Perceived Control and Intrinsic–Extrinsic
Motivation

Past studies have identified various motivational
factors that affect academic achievement. The pres-
ent research focused on three of these factors that
are regarded as especially important in motivation
theory and research: perceived control, intrinsic
motivation, and extrinsic motivation (Eccles &
Wigfield, 2002; Pekrun, 2006). Perceived control is
conceptualized as subjective appraisal of the causal
link between one’s action and outcomes (Perry,
Hladkyj, Pekrun, & Pelletier, 2001; Rotter, 1966).
That is, perceived control reflects one’s expectancy
to obtain a desired outcome through an action.
Concepts of perceived control and competence (and
related constructs of expectancies) play a prominent
role in motivation theories (Bandura, 1977; Eccles &
Wigfield, 2002; Marsh & Shavelson, 1985; Pekrun,
1993), and many studies have shown that perceived
control and competence in academic domains are
positively related to achievement (Marsh, 1990;
Meece, Wigfield, & Eccles, 1990). By implication, it
is straightforward to expect that perceived control
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is positively associated with concurrent level of
students’ achievement in domains such as mathe-
matics.

Importantly, adolescents’ perceived control has
also been shown to relate to their learning.
Perceived control is linked to active and effortful
commitment to learning (Skinner, Wellborn, &
Connell, 1990), persistence when performing diffi-
cult and challenging tasks (Cervone & Peake, 1986),
and intrinsic engagement (Gottfried, 1990). Together
these findings suggest that perceived control should
help adolescent students acquire new knowledge,
and as such, should positively predict growth in
their achievement. Indeed, longitudinal research on
students’ academic self-concepts has produced
robust evidence that competence-related self-
appraisals can influence subsequent academic
achievement (e.g., Marsh, 1990; for reviews, see
Marsh & Craven, 2006; Valentine, DuBois, & Cooper,
2004). Although (past) self-concept research relied
on lagged analyses that do not consider absolute
growth over time, the findings suggest that
competence-related appraisals such as perceived
control can be a positive predictor of long-term
change in students’ academic achievement.

Intrinsic motivation is defined as motivation to
engage in a task for the sake of interest in the task
itself and the inherent pleasure and satisfaction
derived from the task, whereas extrinsic motivation
is defined as motivation to engage in a task for
external reasons (Deci & Ryan, 1985). Extrinsic
motivation is heterogeneous in that there are a vari-
ety of different external rewards that produce moti-
vated behavior. In the present research, we focus
on extrinsic motivation driven by the desire to get
good grades, as this is one of the most prevalent
forms of extrinsic motivation in academic settings
(Lemos, 1996; Pekrun, 1993).

Intrinsic motivation is associated with various
variables supporting learning, such as active and
effortful engagement (Ryan & Connell, 1989), per-
sistence in the face of failure (Elliott & Dweck,
1988), and positive emotional learning experiences
(Pekrun, Goetz, Titz, & Perry, 2002). Extrinsic moti-
vation, on the other hand, is typically driven by
expected short-term benefits of learning and is
linked to instrumental learning independent of
interest (Grolnick & Ryan, 1987), overuse of depen-
dent help seeking (Butler, 1998), and self-handicapping
(Urdan & Midgley, 2001). As such, extrinsic
motivation seems suited to benefit immediate, but
rather ephemeral, academic achievement, whereas
intrinsic motivation seems ideally suited to benefit
enduring, long-term learning. Thus, we propose

that intrinsic motivation positively predicts growth
in academic achievement (and possibly concurrent
achievement as well; see also Marsh, Trautwein,
L€udtke, K€oller, & Baumert, 2005), whereas extrinsic
motivation has short-term effects that are mani-
fested in a link to current achievement, but does
not promote long-term growth. Although these
time-dependent relations (i.e., relations that emerge
at a particular point in time) of intrinsic and
extrinsic motivation are documented in a few
experimental studies (Murayama & Elliot, 2011;
Vansteenkiste, Simons, Lens, Soenens, & Matos,
2005), little research has demonstrated such a
pattern of effects in the context of long-term growth
of academic achievement.

Cognitive Strategies: Deep and Surface Learning
Strategies

Learning strategies are strategies that are
employed by learners to study materials. Herein,
we focus on two primary cognitive learning strate-
gies that are widely recognized as having concep-
tual and predictive utility: deep learning strategies
(specifically, elaboration of learning material) and
surface learning strategies (rehearsal or memorization;
Ramsden, 1988). Deep strategies involve challeng-
ing the veracity of information encountered and
attempting to integrate new information with prior
knowledge, whereas surface learning strategies
characterize the repetitive rehearsal and rote memo-
rization of information (Entwistle & Ramsden,
1983).

The extant data are mixed for the relation
between these learning strategies and academic
achievement, but tend to show null or positive
relations for deep strategies and null or negative
relations for surface strategies (Entwistle & Ramsden,
1983; Meece, Blumenfeld, & Hoyle, 1988). However,
most of the studies to date have focused on links
with the level of academic achievement at one point
in time. A few studies have shown that learning-
related strategy use has an impact on the growth of
academic achievement during early childhood (e.g.,
McClelland, Acock, & Morrison, 2006), but the
long-term relations of learning strategies with
achievement during adolescence remain unclear.

Deep learning involves semantic understanding
of study materials. Semantic understanding is an
essential component in acquiring durable and
meaningful knowledge, and the knowledge
acquired through this semantic elaboration is more
likely to lead to later academic success. Therefore,
we anticipated that deep strategies would have
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positive relations with growth (as well as initial
levels) of academic achievement. In contrast, we
expected that surface strategies would not predict
growth rates in achievement. Surface strategies
involve rote memorizing without deep elaboration,
and studies have indicated that knowledge
acquired through rote memorizing fades quickly
(Brown & Craik, 2000). Therefore, we anticipated
that surface learning would not support further
learning, although these strategies might help
immediate academic achievement.

Limitations in Previous Research on Long-Term Growth
in Achievement

This study used latent growth curve modeling
(McArdle, Anderson, Birren, & Schaie, 1990) to
examine predictors of growth in math achievement.
One of the advantages of latent growth curve
modeling is that it can evaluate the predictors of
absolute levels of growth. As noted earlier, previ-
ous theorizing and evidence suggest that some
motivational variables and learning strategies
should predict long-term growth in academic
achievement. However, only a few studies have uti-
lized latent growth curve modeling to directly
address the predictors of absolute levels of growth
in achievement over time. Furthermore, the research
available that used latent growth curve modeling
has a number of important limitations that substan-
tially reduce possibilities to draw firm inferences.

First, there is a significant lack of work that con-
trolled for intelligence. Intelligence is a ubiquitous,
strong predictor of academic achievement (Neisser
et al., 1996), implying that it may be the most
important confounding variable when examining
links between variables of learning, such as motiva-
tion and cognitive strategies, and academic achieve-
ment (Steinmayr & Spinath, 2009). It is easy to
imagine students who have higher levels of intelli-
gence to be more likely to be motivated and to use
efficient strategies that result in their higher aca-
demic achievement. Therefore, it is important to
include intelligence as a predictor to evaluate the
predictive utility of motivation and cognitive strate-
gies independently of basic cognitive abilities.

It should also be noted that the utility of intelli-
gence to predict growth of achievement is by itself
of theoretical importance. Although researchers
agree that intelligence is a strong predictor of
students’ level of academic achievement, they have
not reached consensus about its utility in predict-
ing growth of achievement over time (Lohman,
Ackerman, Kyllonen, & Roberts, 1999). Studies indi-

cated that intelligence scores did not (or only
weakly) predict growth curves in performance
attainment (e.g., Gutman, Sameroff, & Cole, 2003;
Underwood, Boruch, & Malmi, 1978; Woodrow,
1946). These findings suggest that, unlike motivation
and cognitive strategies, intelligence may not reflect
the capacity to learn new knowledge and skills.
Importantly, however, the majority of these studies
focused on short-term learning (sometimes learning
within one experimental session). Studies investigat-
ing the relations of intelligence with the long-term
growth of academic achievement are still rare.

Second, much of the previous literature using
latent growth curve modeling failed to establish a
common metric for assessments of achievement
over time. For analyzing growth in academic
achievement, if one simply uses achievement test
scores or teacher-provided grades, it is not possible
to adequately study growth because these scores
are likely not comparable across years. To establish
a common metric, item response theory (IRT) can
be employed, and anchor items can be included
across adjacent time points to allow for vertical
scaling (McDonald, 1999). Although IRT scaling is
generally acknowledged today as an appropriate
way to examine academic achievement over time,
there still are many studies that have not used this
methodology, casting doubt on the validity of their
findings on growth (e.g., Gutman et al., 2003; Hart,
Hofmann, Edelstein, & Keller, 1997; Johnson,
McGue, & Iacono, 2006).

Third, previous studies included relatively small
numbers of variables, focusing on either motiva-
tional or strategy constructs (e.g., McClelland et al.,
2006; Shim, Ryan, & Anderson, 2008). However,
given that motivational and strategy variables often
show substantial correlations, it is important to
include multiple variables from both groups of con-
structs to examine their unique contributions.

Finally, previous studies failed to consider the
possibility that the utility of motivational and strat-
egy variables for predicting academic achievement
may change depending on students’ developmental
stage. Many studies have documented developmen-
tal trajectories of motivation and strategies over
time (e.g., Fredricks & Eccles, 2002; Frenzel, Goetz,
Pekrun, & Watt, 2010; Jacobs, Lanza, Osgood,
Eccles, & Wigfield, 2002). It is possible, then, that
not only the developmental trajectories but also the
functions of motivation and learning strategies in
shaping students’ achievement during early adoles-
cence can change over time. However, few studies
have examined developmental change in the func-
tions of these variables.
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Overview of the Present Research and Hypotheses

The current study aimed to broaden the extant
knowledge about how motivation and cognitive strat-
egies relate to growth in academic achievement, using
German longitudinal mathematics achievement data
from six annual waves (Grades 5 through 10). We con-
trolled for intelligence to evaluate the contributions of
motivation and strategy variables, and utilized IRT to
scale academic achievement over time. We included
all of the motivation variables (perceived control,
intrinsic motivation, and extrinsic motivation) and
learning strategy variables (deep and surface strate-
gies) together to investigate their unique contribu-
tions. In addition, we compared the predictive power
of motivation and strategies at two different time
points (Grades 5 and 7) to examine possible functional
change in these variables. Grades 5 and 7 were chosen
because they represent critical periods in the educa-
tional careers of the German students who partici-
pated in the study. Specifically, these students
attended public schools in the German state of Bavaria
that use ability tracking starting in Grade 5. Students
are assigned to low-ability schools (Hauptschule), med-
ium-ability schools (Realschule), and high-ability
schools (Gymnasium). In Grade 7, students’ assign-
ments to low- versus medium-ability schools were
reconsidered; thus, part of the student sample were
reassigned to a different track. As such, for students
in this study, Grades 5 and 7 represented critical
career and academic transitions. Furthermore, stu-
dents in Grades 5 and 7 are in their early adolescence,
a period characterized by a great deal of intellectual,
social, physical, and emotional change (Lerner, 1993),
which may imply that the functions of academic moti-
vation and strategies also undergo change.

Succinctly stated, the study tested the following
hypotheses:

Hypothesis 1: Perceived control is a positive pre-
dictor of the initial level as well as the growth
rate of achievement.

Hypothesis 2: Extrinsic motivation is a positive pre-
dictor of the initial level of achievement, whereas
intrinsic motivation is a positive predictor of both
the initial level and the growth rate of achievement.

Hypothesis 3: Surface learning strategies are a
positive predictor of the initial level of achieve-
ment, whereas deep learning strategies are a posi-
tive predictor of both the initial level and the
growth rate of achievement.

Hypothesis 4: Intelligence is a positive predictor
of the initial level of achievement, but has no rela-
tion with growth rate.

Hypotheses 1–3 were tested while controlling for
students’ intelligence. Furthermore, although we
did not have a specific hypothesis, we expected that
the predictive power of motivation and strategies
may change from Grade 5 to Grade 7.

Method

Participants and Design

The sample consisted of German students who
participated in the Project for the Analysis of Learn-
ing and Achievement in Mathematics (PALMA;
see Frenzel et al., 2010; Frenzel, Pekrun, Dicke, &
Goetz, in press; Pekrun et al., 2007). This project
included a longitudinal study involving annual
assessments during the secondary school years
(Grades 5–10) to investigate the development of
mathematics achievement. At each grade level, the
PALMA math achievement test was administered
toward the end of the school year. Students’ intelli-
gence and the self-reported motivational and strat-
egy variables used in the current study were
assessed toward the end of the school year in
Grades 5 and 7.

Samples were drawn from secondary schools in
the state of Bavaria, and were drawn so that they
were sufficiently representative of the student pop-
ulation of Bavaria (Pekrun et al., 2007). The samples
included students from all three school types within
the Bavarian public school system as described
earlier, including lower-track schools (Hauptschule),
intermediate-track schools (Realschule), and higher-
track schools (Gymnasium). These three school types
differ in academic demands and students’ entry-
level academic ability. German students typically
enter one of these schools in Grade 5 (i.e., the 1st
year of the assessment), based largely on their prior
academic achievement.

At the first assessment (Grade 5), the sample
comprised 2,070 students from 42 schools (49.6%
female, Mage = 11.7 years; 37.2% lower-track school
students, 27.1% intermediate-track school students,
and 35.7% higher-track school students). In each
subsequent year, the study tracked the students
who had participated in the previous assessment(s)
and also included those students who had not yet
participated in the study, but had become students
of PALMA classrooms at the time of the assessment
(see Pekrun et al., 2007). Overall, the study sample
consisted of 3,530 students (49.7% female) who par-
ticipated in at least one assessment (see Supporting
Information Appendix S1 available online for fur-
ther details).
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Measures

Socioeconomic Status (SES)

Family SES was assessed by parent report using
the EGP classification (Erikson, Goldthorpe, &
Portocarero, 1979) which consists of six ordered
categories of parental occupational status. In the
current analysis, the scores are coded so that higher
values represent higher family SES.

Mathematics Achievement

Mathematics achievement was assessed by the
PALMA Mathematics Achievement Test (vom Hofe,
Kleine, Pekrun, & Blum, 2005; vom Hofe, Pekrun,
Kleine, & G€otz, 2002). Using both multiple-choice
and open-ended items, this test measures students’
modeling competencies and algorithmic competen-
cies in arithmetics, algebra, and geometry. It also
comprises subscales pertaining to more specific con-
tents (e.g., fractions, ratios, or functions).

The test was constructed using multimatrix
sampling with a balanced incomplete block design
(for details, see vom Hofe et al., 2002). Specifi-
cally, for each measurement point, two different
test versions were prepared that consisted of
approximately 60–90 items each, and students
completed one of these two test booklets. Anchor
items were included to allow for the linkage of
the two different test forms as well as the six dif-
ferent measurement points. The obtained achieve-
ment scores were scaled using one-parameter
logistic item-response theory (Rasch scaling; Wu,
Adams, Wilson, & Haldane, 2007), with M = 100
and SD = 15 at Grade 5 (i.e., the first measure-
ment point). Additional analyses confirmed the
unidimensionality and longitudinal invariance of
the test scales (see Supporting Information Appen-
dix S1 available online).

Motivation and Learning Strategies

Motivation and learning strategies were assessed
by self-report scales developed for PALMA. All
scales pertained to the domain of mathematics, and
reliability and validity of all the scales were ascer-
tained in two large-sample pilot studies (Ns = 784
and 1,613; Pekrun et al., 2007). Coefficient Omega
was used to estimate the reliability of the scale
scores (see Table 1). Omega provides more fine-
tuned estimates of scale reliability as compared
with the commonly used Cronbach’s Alpha
(McDonald, 1999).

Perceived control. Pekrun et al.’s (2007) Perceived
Academic Control scale was used to assess stu-
dents’ perceived control in mathematics (six items;
e.g., “When doing math, the harder I try, the better
I perform”). Participants responded on a 1 (strongly
disagree) to 5 (strongly agree) scale.

Intrinsic motivation. Three items from Pekrun’s
(1993) Intrinsic Academic Motivation scale were used
to assess students’ intrinsic motivation in mathemat-
ics (e.g., “I invest a lot of effort in math, because I am
interested in the subject”). Participants responded on
a 1 (strongly disagree) to 5 (strongly agree) scale.

Extrinsic motivation. Four items from Pekrun’s
(1993) Extrinsic Academic Motivation scale were
used to assess students’ extrinsic motivation in math-
ematics (sample item: “In math I work hard, because
I want to get good grades”). Participants responded
on a 1 (strongly disagree) to 5 (strongly agree) scale.

Deep learning strategies. The PALMA elaboration
strategies scale (Pekrun et al., 2007) was used to assess
students’ deep learning strategies (three items; e.g.,
“When I study for exams, I try to make connections
with other areas of math”). Participants responded on
a 1 (strongly disagree) to 4 (strongly agree) scale.

Surface learning strategies. The PALMA rehearsal
strategies scale (Pekrun et al., 2007) was used to assess
students’ surface learning strategies (three items; sam-
ple item: “For some math problems I memorize the
steps to the correct solution”). Participants responded
on a 1 (strongly disagree) to 4 (strongly agree) scale.

Table 1
Descriptive Statistics and Internal Consistencies of the Predictors

M SD
Observed
range

Coefficient
of reliability

Grade 5
Perceived control 3.87 0.72 1.17–5.00 .75
Intrinsic motivation 3.21 1.18 1.00–5.00 .87
Extrinsic
motivation

3.37 0.99 1.00–5.00 .80

Deep learning
strategies

2.38 0.78 1.00–4.00 .67

Surface learning
strategies

2.49 0.75 1.00–4.00 .64

Intelligence 104.75 13.41 61–132 —

Grade 7
Perceived control 3.43 0.83 1.00–5.00 .81
Intrinsic motivation 2.57 1.07 1.00–5.00 .84
Extrinsic motivation 2.87 0.97 1.00–5.00 .78
Deep learning
strategies

2.03 0.70 1.00–4.00 .64

Surface learning
strategies

2.26 0.73 1.00–4.00 .65

Intelligence 99.61 14.56 55–145 —
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Intelligence. Intelligence was measured using the
25-item nonverbal reasoning subtest of the German
adaptation of Thorndike’s Cognitive Abilities Test
(Kognitiver F€ahigkeitstest [KFT 4–12 + R]; Heller &
Perleth, 2000).

Strategy of Data Analysis

Growth curve models can be fit in both struc-
tural equation modeling (SEM) and multilevel mod-
eling frameworks. We decided to use the SEM
framework because it allows us to assess the overall
fit between the empirical data and the growth
curve models we specified. Specifically, we evalu-
ated the comparative fit index (CFI), the Tucker–
Lewis index (TLI), the root mean square error of
approximation (RMSEA), and the standardized root
mean square residual (SRMR). It should be noted
that nearly all current SEM packages compute CFI
and TLI based on an inappropriate baseline model
when evaluating the fit of latent growth curve
models (Wu, West & Taylor, 2009). In our analysis
of latent growth curve models, we corrected the
CFI and TLI by specifying the appropriate baseline
model (see Wu et al., 2009). Following conventions,
we regarded values higher than .90 for CFI and
TLI, lower than .08 for the RMSEA, and lower than
.10 for the SRMR as indicating an acceptable fit.

Prior to the analyses, all the predictors except for
demographic variables were standardized with zero
mean and unit variance, and SES was mean cen-
tered to facilitate the interpretation of the results.
Based on Muth�en and Muth�en (2004), we adjusted
the standard errors and chi-square statistics to cor-
rect for potential statistical biases resulting from
non-normality of the data. Due to the longitudinal
design of the study, there is a certain proportion of
missing data. Accordingly, to make full use of the
data from students who only partially participated
in the investigation, we applied the full information
maximum likelihood method to deal with missing
data (Enders, 2006). Additional analyses that
addressed issues of measurement error and the
nested structure of the data (i.e., individuals nested
within schools) are reported in Supporting Informa-
tion Appendix S1 available online.

Results

Longitudinal Analysis of Measurement Invariance for
Motivation and Strategies

The descriptive statistics of the predictor vari-
ables for Grades 5 and 7 are provided in Table 1.

Because we wanted to compare the predictive
utility of motivational and strategy variables across
two different time points (i.e., Grades 5 and 7), we
used confirmatory factor analysis to assess mea-
surement equivalence across these time points. Spe-
cifically, we evaluated the full scalar and error
variance invariance model (see Steenkamp & Baum-
gartner, 1998), in which the item intercept, factor
loadings, factor variances and covariances, and
error variances were set to be equal across the time
points. Support for this model would provide
strong evidence for longitudinal invariance of the
measures. All of the motivation and learning strat-
egy variables were analyzed together. The residuals
associated with indicators of the same items in
Grades 5 and 7 were allowed to correlate. The
results supported the longitudinal invariance of the
scales, with good fit to the data, v2(663) = 2,548.98,
p < .01, CFI = .92, TLI = .92, RMSEA = .031, SRMR
= .060. These findings suggest that it is legitimate
to compare the predictive utility of the motivational
and strategy variables across time points.

The disattenuated correlations of the latent fac-
tors for the same constructs over time were .37 to
.47 (ps < .01). The size of these coefficients indicates
that the motivational and strategy variables were to
some extent stable across the 2 years but also
showed change, suggesting that it is possible that
their functional roles for predicting academic
achievement also changed over time. Comparison
of factor means indicated a decline in all of the
motivation and strategy variables from Grades 5 to
7 (ps < .01), which is largely consistent with previ-
ous findings (e.g., Jacobs et al., 2002; Otis, Grouzet
& Pelletier, 2005).

Latent Growth Curve Modeling

In the latent growth curve analysis, we first
constructed a growth curve model without motiva-
tional and strategy variables to specify the basic
functional form of growth in mathematical achieve-
ment. In this model, math achievement scores
across six different time points (Grades 5–10) are
modeled by a set of common factors repre-
senting the functional form of growth. Our initial
exploration of the data indicated that a linear
growth model (a model including an intercept and
a linear slope) did not fit the data well, suggesting
that the growth curve includes nonlinear change.
Accordingly, we decided to use an exponential
growth curve model (Grimm, Ram, & Hamagami,
2011; for details about model selection, see Support-
ing Information Appendix S1 available online).
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Exponential growth curve modeling has several
advantages over the commonly used quadratic
growth curve model. Notably, exponential growth
models provide interpretable parameters describing
growth, such as the total amount of change over
time. This point is of particular importance for our
study, as we are interested in the factors that
influence the overall amount of growth over years.
The model is represented by the following equa-
tion.

yt ¼ g0 þ g1½1� expð�a � xtÞ� þ et;

t ¼ 5; 6; 7; 8; 9; 10
ð1Þ

where yt is the math achievement score at grade t,
and g0 and g1 are the latent variables representing
the intercept and total amount of (asymptotic)
growth. a is a free parameter representing the rate
of growth. ɛt is the error term for grade t, and we
constrained the variances of this term to be equal
across the time points [i.e., varðe5Þ ¼ varðe6Þ
¼ varðe7Þ ¼ varðe8Þ ¼ varðe9Þ ¼ varðe10Þ; Hertzog,
von Oertzen, Ghisletta, & Lindenberger, 2008]. xt
represents the fixed time coding at grade t
anchored at the initial time point [i.e., x5 = 0,
x6 = 1, x7 = 2, x8 = 3, x9 = 4, x10 = 5]. By this partic-
ular coding of time point, we can interpret g0 as
the predicted math achievement score at the initial
time point, and g1 as the asymptotic total amount
of growth from the initial time point.

To control for participants’ demographic back-
ground, variables representing gender, school type,
and SES were included in the model. Gender was
treated as a dummy-coded variable (GENDER;
0 = female, 1 = male), and school type was repre-
sented by two orthogonal contrast variables. The
first school-type variable represents the difference
between higher-track schools and the pooled inter-
mediate- and lower-track schools (SCTYPE1; higher-
track school = 2, intermediate-track school = �1,
lower-track school = �1). The second variable rep-
resents the difference between intermediate-track
schools and lower-track schools (SCTYPE2; higher-
track school = 0, intermediate-track school = 1,
lower-track school = �1). The following equations
show the mathematical representation of this part
of the model.

g0 ¼ lg0 þ c01GENDERþ c02SCTYPE1

þc03SCTYPE2 þ c04SESþ f0
ð2Þ

g1 ¼ lg1 þ c11GENDERþ c12SCTYPE1

þc13SCTYPE2 þ c14SESþ f1
ð3Þ

where c represents the path coefficients of the cor-
responding variable. f is the error (or disturbance)
term for each growth component.

The model showed an acceptable fit to the data,
v2(36) = 757.48, p < .01, CFI = .96, TLI = .94, RMSEA
= .075, SRMR = .090. The results (see Table 2)
revealed that the mean total amount of growth was
significantly positive (lg1 = 144.17, p < .01) with a
positive growth rate (a = .06, p < .01). In addition,
most of the path coefficients for gender, school type,
and SES variables were significant, suggesting vari-
ability in growth trajectories across demographic
background variables. Figure 1 displays the esti-
mated growth curves for male and female students
from different types of schools.

An interesting observation in Figure 1 is that
the difference between school tracks became larger
with increasing grade level, as indicated by the
significantly positive relation of school type with
total amount of change (c12 = 12.74, p < .01;
c13 = 9.27, p < .01). This finding suggests that the
tracking system used in Germany may be a source
of a “Matthew effect” in math achievement—a
phenomenon where the gap between high-achiev-
ing and low-achieving students increases with
time (Bast & Reitsma, 1997; Baumert, Nagy, &
Lehmann, 2012). To quantitatively evaluate the
link between tracking and the Matthew effect, we

Table 2
Parameter Estimates for the Growth Curve Model Including Gender
and School Type

Estimate SE

Intercept
Mean (lg0) 99.28** 0.31
Gender (c01) 3.24** 0.45
School type 1
(high vs. mid or low track; c02)

4.51** 0.17

School type 2
(mid vs. low track; c03)

6.24** 0.27

Family socioeconomic status (c03) 0.66** 0.13
Total amount of growth
Mean (lg1) 144.17** 18.1
Gender (c11) �1.08 2.37
School type 1
(high vs. mid or low track; c12)

9.27** 1.29

School type 2
(mid vs. low track; c13)

12.74** 2.02

Family socioeconomic status (c13) 0.85 0.67

**p < .01.
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computed the correlation between the intercept
(g0) and the total amount of change (g1) before
and after including the school-type variables.
When the school-type variables were not included,
this correlation was positive (r = .29, p < .01), indi-
cating the presence of a Matthew effect. Control-
ling for these variables dramatically decreased the
correlation (r = .01, p = .79), suggesting that the
Matthew effect observed in the data is linked to
tracking as used in the German secondary school
system.

Predictive Relations of Motivation and Strategies
Assessed at Grade 5

To examine the relations of Grade 5 motivational
and strategy variables with the growth curve of
achievement, we included these variables as predic-
tors of the growth components. We also included
intelligence as a predictor to control for students’
basic cognitive abilities and to investigate the pre-
dictive utility of intelligence for the growth compo-
nents. Specifically, Equations 2 and 3 were
expanded to take the following form:

g0 ¼lg0 þ c01GENDERþ c02SCTYPE1

þ c03SCTYPE2 þ c04SESþ c05CONT
þ c06INTþ c07EXTþ c08DEEPþ c09SURFACE
þ c10IQþ f0

ð4Þ

g1 ¼lg1 þ c11GENDERþ c12SCTYPE1

þ c13SCTYPE2 þ c14SESþ c15CONT
þ c16INTþ c17EXTþ c18DEEP
þ c19SURFACEþ c20IQþ f1

ð5Þ

where CONT, INT, EXT, DEEP, SURFACE, and IQ
represent the variables of perceived control, intrin-
sic motivation, extrinsic motivation, deep learning
strategies, surface learning strategies, and intelli-
gence assessed at Grade 5.

The model showed an acceptable fit to the data,
v2(60) = 843.00, p < .01, CFI = .97, TLI = .93,
RMSEA = .061, SRMR = .059. The parameter esti-
mates of the model are presented in Table 3. Not
surprisingly, intelligence had a strong positive rela-
tion with the intercept (c10 = 4.72, p < .01). In addi-
tion, however, most of the motivational and
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Figure 1. Estimated growth curve of math achievement from
Grades 5 to 10 as a function of gender and school type.
Note. Gymnasium = higher-track school; Realschule = intermedi-
ate-track school; Hauptschule = lower-track school.

Table 3
Parameter Estimates for the Growth Curve Model Including Motiva-
tional and Strategy Variables Assessed at Grade 5

Estimate SE

Intercept
Mean (lg0) 99.68** 0.30
Gender (c01) 2.42** 0.42
School type 1
(high vs. mid or low track; c02)

3.36** 0.17

School type 2
(mid vs. low track; c03)

4.67** 0.27

Family socioeconomic status (c04) 0.45** 0.12
Perceived control (c05) 2.21** 0.27
Intrinsic motivation (c06) 1.53** 0.29
Extrinsic motivation (c07) 0.74** 0.28
Deep learning strategies (c08) �0.41 0.31
Surface learning strategies (c09) �1.60** 0.27
Intelligence (c10) 4.72** 0.27

Total amount of change
Mean (lg1) 142.34** 17.6
Gender (c11) �1.22 2.49
School type 1
(high vs. mid or low track; c12)

8.15** 1.26

School type 2
(mid vs. low track; c13)

11.69** 2.00

Family socioeconomic status (c14) 0.66 0.66
Perceived control (c15) 3.78* 1.72
Intrinsic motivation (c16) 1.04 1.84
Extrinsic motivation (c17) 1.56 1.72
Deep learning strategies (c18) �2.52 1.88
Surface learning strategies (c19) �5.99** 1.71
Intelligence (c20) 0.24 1.61

*p < .05. **p < .01.
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strategy factors yielded significant incremental rela-
tions with the initial achievement score, over and
above intelligence. Specifically, perceived control,
intrinsic motivation, and extrinsic motivation were
significant predictors of the intercept factor
(c05 = 2.21, c06 = 1.53, and c07 = 0.74, ps < .01),
whereas surface learning strategies were a negative
predictor (c09 = �1.60, p < .01). Deep learning strat-
egies did not show any significant relation (p = .18).

Intriguingly, in contrast to the relations with the
intercept factor, intelligence did not predict the total
amount of growth of math achievement over time
(c20 = 0.24, p = .88). However, two of the motiva-
tional and strategy variables turned out to be signif-
icant predictors of growth of math achievement
over time. Specifically, perceived control was a sig-
nificantly positive predictor of the slope factor
(c15 = 3.78, p < .05), whereas surface learning strate-
gies were a significantly negative predictor
(c19 = �5.99, p < .01). This result underscores the
unique importance of motivational and strategy
variables in affecting not only current achievement
but also the long-term growth of achievement.

To facilitate the interpretation of the findings on
growth, we estimated the growth curves of
students with scores of 1.5 SD above the mean for
perceived control and 1.5 SD below the mean
for surface learning strategies (“high-growth stu-
dents”), and students with scores of 1.5 SD below
the mean for perceived control and 1.5 SD above
the mean for surface learning strategies (“low-
growth students”). To avoid redundancy, Figure 2
presents the estimated growth curves only for male
higher-track (Gymnasium) students. The shape of
the growth curves for females and for intermediate-
or lower-track students was basically the same.
Figure 2 visually confirms that the slope is steeper
for high-growth than for low-growth students.

Predictive Relations of Motivation and Strategies
Assessed at Grade 7

The previous analysis partially supported our
hypotheses in that (a) intelligence had strong
positive relations with initial level of math achieve-
ment but showed null relations with growth rate
and (b) perceived control had positive relations not
only with initial level but also with the growth rate.
To further explore our hypotheses, we next focused
on students’ growth in math achievement from
Grades 7–10. Specifically, we investigated whether
the growth curve estimated in the Grades 7–10 data
can be predicted by motivation and learning strate-
gies assessed at the Grade 7. The model was the

same as in the previous analysis, Equations 1, 4,
and 5, with the following exceptions. First, Equa-
tions 4 and 5 included the motivational and strat-
egy variables and intelligence assessed at Grade 7
instead of Grade 5, as our focus was to examine the
predictive utility of the variables assessed at Grade
7. Participants’ school type was also coded based
on the information at Grade 7. Second, we used the
math achievement scores assessed across Grades
7–10, that is, t = 7, 8, 9, 10 in Equation 1 and
x7 = 0, x8 = 1, x9 = 2, x10 = 3. Third, we fixed the
growth rate parameter to the value obtained in the
previous analysis (i.e., a = .06) to make the Grade 5
and Grade 7 analyses comparable. This constraint
improved model fit in terms of the Akaike informa-
tion criterion and the Bayesian information
criterion, and did not significantly increase the chi-
square fit statistics, Dv2(1) = 1.09, p = .30.

The model showed an acceptable fit to the data,
v2(28) = 477.79, p < .01, CFI = .97, TLI = .91, RMSEA
= .073, SRMR = .060. The parameter estimates of the
model are presented in Table 4. For the prediction of
the intercept, the pattern of results was almost the
same as in the Grade 5 analysis; in addition to the
strong positive explanatory power of intelligence
(c10 = 6.10, p < .01), perceived control and extrinsic
motivation were significantly positive predictors of
the initial level of math achievement (c05 = 3.35,
p < .01; c07 = 1.18, p < .01), whereas surface learning
strategies were a significantly negative predictor
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Figure 2. Estimated math achievement growth curve from 5th to
10th grades for high-growth and low-growth students.
Note. To avoid redundancy, only male Gymnasium students are
plotted. High-growth students = 1.5 SD above the mean for per-
ceived control and 1.5 SD below the mean for surface learning
strategies. Low-growth students = 1.5 SD below the mean for
perceived control and 1.5 SD above the mean for surface learn-
ing strategies.

Long-Term Growth 9



(c09 = �1.49, p < .01). These results again corrobo-
rate the importance of motivational and strategy fac-
tors in accounting for current math achievement over
and above intelligence. On the other hand, intrinsic
motivation and deep learning strategies were not sig-
nificant predictors of the intercept factor.

Intriguingly, for the prediction of total amount of
growth, the Grade 7 analysis showed a pattern of
results that differed substantially from the Grade 5
findings. Specifically, whereas perceived control,
extrinsic motivation, and surface learning strategies
did not predict growth of math achievement, intrin-
sic motivation and deep learning strategies were
significantly positive predictors of the total amount
of growth (c16 = 4.51, p < .05; c18 = 4.64, p < .05).
Again, intelligence had null relations with the
amount of growth (c20 = 0.37, p = .87).

As in the Grade 5 analysis, these findings indi-
cate that motivational and strategy variables
uniquely contribute to growth of math achieve-

ment. Furthermore, these findings also indicate that
there is developmental change in the predictive
power of these variables. As assessed at Grade 7,
intrinsic motivation and deep learning strategies
did not have any significant relations with the inter-
cept factor but related to subsequent growth, sug-
gesting that they may not have immediate utility
but may provide long-term benefits in facilitating
math achievement at this age. As an illustration for
the nature of this finding, Figure 3 displays the esti-
mated growth curves of male higher-track (Gymna-
sium) students with scores 1.5 SD above the mean
for intrinsic motivation and deep learning strategies
(“high-growth students”) and students with scores
1.5 SD below the mean for these variables (“low-
growth students”). The shape of the growth curves
for females and for intermediate- or lower-track
students was basically the same. Figure 3 visually
confirms that high-growth and low-growth students
did not differ in terms of the initial status at Grade
7, but developed differently across the subsequent
grade levels.

Discussion

This research examined the predictive power of
motivation, cognitive strategies, and intelligence for
explaining the long-term growth of adolescents’
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Figure 3. Estimated math achievement growth curve from 7th to
10th grades for high-growth and low-growth students.
Note. To avoid redundancy, only male Gymnasium students are
plotted. High-growth students = 1.5 SD above the mean for
intrinsic motivation and deep learning strategies. Low-growth
students = 1.5 SD below the mean for intrinsic motivation and
deep learning strategies.

Table 4
Parameter Estimates for the Growth Curve Model Including Motiva-
tional and Strategy Variables Assessed at Grade 7

Estimates SE

Intercept
Mean (lg0) 114.57** 0.28
Gender (c01) 1.85** 0.43
School type 1
(high vs. mid or low track; c02)

4.47** 0.17

School type 2
(mid vs. low track; c03)

6.88** 0.28

Family socioeconomic status (c04) 0.33** 0.12
Perceived control (c05) 3.35** 0.27
Intrinsic motivation (c06) 0.37 0.29
Extrinsic motivation (c07) 1.18** 0.28
Deep learning strategies (c08) �0.49 0.28
Surface learning strategies (c09) �1.49** 0.25
Intelligence (c10) 6.10** 0.27

Total amount of change
Mean (lg1) 134.39** 2.41
Gender (c11) 6.41 3.40
School type 1
(high vs. mid or low track; c12)

3.80** 1.42

School type 2
(mid vs. low track; c13)

6.23* 2.76

Family socioeconomic status (c14) 1.69 0.96
Perceived control (c15) �2.76 2.18
Intrinsic motivation (c16) 4.51* 2.25
Extrinsic motivation (c17) �0.55 2.10
Deep learning strategies (c18) 4.64* 2.23
Surface learning strategies (c19) �0.81 2.02
Intelligence (c20) 0.37 2.28

*p < .05. **p < .01.
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achievement in mathematics from Grades 5 to 10.
The results showed that motivation and strategies
predicted current math achievement over and
above intelligence. Furthermore, our findings
revealed that motivation and strategies also
explained the growth of achievement. Growth was
positively predicted by perceived control, intrinsic
motivation, and deep learning strategies, and it was
negatively predicted by surface learning strategies.
In contrast, intelligence turned out not to be a pre-
dictor of growth (after controlling for demographic
variables), despite being a strong predictor of
current math achievement. Overall, these findings
largely support our hypotheses.

Relations of Motivation and Strategies With Initial Level
and Growth of Achievement

Among the motivational factors, both perceived
control and intrinsic motivation predicted long-
term growth in math achievement. Specifically,
perceived control (assessed at Grade 5) and intrin-
sic motivation (assessed at Grade 7) positively pre-
dicted the total amount of growth in math
achievement. This lends support to the notion that
these constructs do not merely reflect subjective
perceptions of current ability (perceived control) or
transient, ephemeral positive emotion (intrinsic
motivation), but motivational tendencies that shape
future learning and resulting achievement (Deci &
Ryan, 1985; Marsh & Craven, 2006). In contrast,
extrinsic motivation predicted only initial levels but
not growth in achievement, illustrating an interest-
ing contrast with the relations observed for intrinsic
motivation. The short-lived nature of extrinsic moti-
vation and long-term benefit of intrinsic motivation
are in accordance with previous experimental find-
ings (Murayama & Elliot, 2011; Vansteenkiste et al.,
2005), and our results provide the first evidence
that this pattern is evident even over long periods
of time.

With regard to learning strategies, both deep
strategies and surface strategies were related to
long-term growth in math achievement, but
their relations had opposite signs (deep learning
strategies were positively linked, whereas surface
learning strategies were negatively linked to
growth). Furthermore, surface learning strategies
were also negatively linked to initial level of
achievement. Although we had not expected that
surface learning strategies would lead to lower
initial levels and smaller growth rates of math
achievement, it is plausible that relying on surface,
rehearsal-based strategies can interfere with the use

of more efficient strategies and thus be deleterious
for achievement outcomes. It should be noted,
however, that the present findings do not indicate
that surface learning strategies are maladaptive
in any situations, as the effectiveness of learning
strategies may largely depend on learning materials
and phases of learning (Alexander & Murphy,
1998). Surface learning strategies may be useful for
some tasks (e.g., skill tasks) or at initial stages of
learning.

A seemingly counterintuitive finding is that
intrinsic motivation (assessed at Grade 7) and deep
learning strategies (assessed at Grades 5 and 7)
were unrelated to concurrent achievement.
Although unexpected, this is actually consistent
with the extant literature suggesting that the rela-
tion between these constructs and performance is
unclear (Meece et al., 1988; Murphy & Alexander,
2002; Utman, 1997). Students with high intrinsic
motivation are less concerned about how well they
perform on upcoming achievement tests. Accord-
ingly, although intrinsic motivation should provide
long-term benefits, such a noninstrumental
approach to learning may not add much to current
performance. As for deep, elaborative learning
strategies, previous studies indicated that elabora-
tive learning may not be an efficient means of deal-
ing with an upcoming achievement test because
semantic elaboration is a relatively slow learning
process and therefore costly if time is limited (Gar-
ner, 1990). Given the somewhat counterintuitive
nature of this phenomenon, further research is
needed to replicate the present findings and to
examine possible conditions under which these con-
structs are positively related to (concurrent)
achievement scores.

Developmental Differences in the Functions of
Motivation and Strategies

It is noteworthy that the motivational and strat-
egy variables predicted growth at different develop-
mental stages. For motivational factors, the relation
between perceived control and growth in math
achievement was observed when perceived con-
trol was assessed at Grade 5, whereas differential
relations for intrinsic versus extrinsic motivation
emerged only when motivation was assessed at
Grade 7.

One possible explanation is that our findings
reflect developmental differences in students’
understanding of different dimensions of motiva-
tion. Perceived control (i.e., cognitive representa-
tions of action–outcome contingencies) seems to be
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a straightforward notion that may require little
cognitive capacity to understand. Thus, it is likely
that students develop individual appraisals of per-
sonal control over achievement and that these
appraisals influence their academic achievement
from early on (e.g., in the first grades of elemen-
tary school). In contrast, understanding the intrinsic
versus extrinsic reasons underlying one’s behavior
is quite complicated and may require higher order
thinking. As a result, comprehension of the intrin-
sic–extrinsic distinction to the extent that intrinsic
motivation can clearly relate to long-term achieve-
ment growth may occur only later (e.g., in early
adolescence). In fact, previous findings indicate that
children’s perceptions of control (expectancy
beliefs) differentiate into subject-specific, distinct
constructs at a very early stage in elementary
school. In contrast, subcomponents of task value
(such as intrinsic value vs. utility value) are less
differentiated among younger children, but become
more distinct during early adolescence (Wigfield &
Eccles, 1992).

We also observed that perceived control at
Grade 5 predicted growth in math achievement,
whereas perceived control at Grade 7 failed to do
so. One possible explanation is that, as mathemat-
ics content becomes more difficult, students’ judg-
ments of personal control over achievement are
anchored more to concrete experiences with current
math problems rather than to judgments of per-
sonal math ability and possible future trajectories
of developing math competence (see Vallacher &
Wegner, 1987), resulting in less predictive power
for long-term growth. In accord with this interpre-
tation, contrary to the predictive relations with
growth, the link between perceived control and
concurrent achievement was stronger at Grade 7
than at Grade 5.

With regard to strategy variables, growth in
math achievement was positively predicted by deep
learning strategies at Grade 7, but not yet at Grade
5. Previous developmental studies on strategy use
have shown that students exhibit an increasing
readiness across adolescence to deploy strategies
that are elaborative and generative (Christopoulos,
Rohwer, & Thomas, 1987; Pressley, Borkowski, &
Johnson, 1987). In addition, these studies also
revealed a “utilization deficiency,” a phenomenon
whereby children, up until a particular develop-
mental stage, are able to use a learning strategy,
but are unable to reap its performance benefits
(Bjorklund, Coyle, & Gaultney, 1992; Miller & Seier,
1994). Our findings shed light on these findings,
suggesting that an effective use of deep learning

strategies may occur only later in students’ aca-
demic career.

The Role of Intelligence and the Matthew Effect

One of the features of the current investigation is
that we controlled for intelligence when examining
the predictive relations of motivation and cognitive
strategies. This is by itself of considerable impor-
tance, as discussed at the outset. In addition, the
inclusion of intelligence as a predictor produced
interesting findings: Long-term growth in math
achievement was predicted by motivational and
strategy factors, but not by students’ intelligence
(after controlling for demographic variables). This
stands in marked contrast to the commonly
observed finding that intelligence explains a much
larger proportion of the variance in current achieve-
ment scores, as compared to motivational and strat-
egy variables (e.g., Spinath, Spinath, Harlaar, &
Plomin, 2006). We should be aware that this study
focused on the development of achievement in one
academic domain only. Nonetheless, our findings
clearly underscore the importance of paying atten-
tion to adolescents’ motivation and learning strate-
gies when wanting to understand the development
of their academic achievement. Thus, an intriguing
message from this study is that the critical determi-
nant of growth in achievement is not how smart
you are, but how motivated you are and how you
study.

Another interesting finding is the Matthew effect,
a phenomenon that over time more able individuals
become even better and less able individuals
become even worse, thus widening the gap
between haves and have-nots. The Matthew effect
has been investigated in a number of different
domains, such as reading ability (Stanovich, 1986)
and job payment (Tang, 1996). The current study
observed the Matthew effect in the domain of math
achievement during adolescence, and the findings
suggest that the effect may have been linked to the
German school tracking system. It should be kept
in mind, however, that the current analysis
provides little information about the background
characteristics of students attending schools from
different tracks (e.g., in terms of learning environ-
ments at home) or the educational quality of these
schools that may have produced this Matthew
effect. These varied explanations would have differ-
ent educational implications (see also Baumert
et al., 2012). Further research is needed to investi-
gate such mechanisms that widen the gap between
students differing in initial achievement.
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Limitations and Directions for Future Research

Our findings should be interpreted in the context
of several limitations that suggest directions for
future research. First, although the IRT scaling has
the great advantage of establishing a common met-
ric across different grade levels—an issue that was
not addressed in many previous studies—it rests on
the critical assumption that all math achievement
test items measure a single unidimensional con-
struct. By testing the dimensionality and longitudi-
nal invariance of the PALMA Math Achievement
Test, we were able to show that there was no major
violation of unidimensionality assumptions in this
study (see Supporting Information Appendix S1
available online). However, unidimensionality
assumptions cannot be completely met in longitudi-
nal studies of academic achievement, given the
need to include items measuring various contents
that match the diversity of the curriculum both
within and across grade levels. Future research
would do well to investigate the impact of such
local heterogeneity of items on growth trajectories.

Second, although the present research produced
evidence about the predictive power of motiva-
tional and strategy variables on growth (after
controlling for demographic variables and intelli-
gence), these relations are still correlational in
nature. Thus, one should exercise caution when
interpreting these links in terms of causality.
Although this was not the primary concern of our
research, alternative approaches such as a cross-
lagged analysis (e.g., Marsh & Craven, 2006)
or dual change score analysis (see McArdle &
Hamagami, 2001) may be better suited to examine
causal ordering and possible reciprocal effects. Pre-
vious research has shown that students’ academic
self-concepts and their achievement can be linked
by reciprocal causation (Marsh, 1990). It seems
likely that students’ intrinsic and extrinsic motiva-
tion and surface versus deep strategy use also are
reciprocally linked with their academic achieve-
ment. Future research should examine the nature
of these reciprocal associations.

Conclusion

Numerous studies have been conducted to better
understand students’ motivation and learning strat-
egies as promoting the academic development of
competence and knowledge. Researchers defined
motivation as the process whereby goal-directed
activity is instigated and sustained (Pintrich &
Schunk, 2002). Learning strategies are described as

planned sets of coordinated study tactics that are
directed by a learning goal and aim to acquire a
new skill or gain understanding (Alexander & Mur-
phy, 1998). According to these views, motivation
and learning strategies should, by their nature,
facilitate long-term learning processes. The present
research documents that these variables are indeed
important for students’ academic growth over the
school years.
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