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SUMMARY

What makes one person more intellectually able
than another? Can the entire distribution of human
intelligence be accounted for by just one general
factor? Is intelligence supported by a single neural
system? Here, we provide a perspective on human
intelligence that takes into account how general
abilities or ‘‘factors’’ reflect the functional organiza-
tion of the brain. By comparing factor models of
individual differences in performance with factor
models of brain functional organization, we demon-
strate that different components of intelligence
have their analogs in distinct brain networks. Using
simulations based on neuroimaging data, we show
that the higher-order factor ‘‘g’’ is accounted for
by cognitive tasks corecruiting multiple networks.
Finally, we confirm the independence of these com-
ponents of intelligence by dissociating them using
questionnaire variables. We propose that intelli-
gence is an emergent property of anatomically
distinct cognitive systems, each of which has its
own capacity.

INTRODUCTION

Few topics in psychology are as old or as controversial as

the study of human intelligence. In 1904, Charles Spearman

famously observed that performance was correlated across

a spectrum of seemingly unrelated tasks (Spearman, 1904).

He proposed that a dominant general factor ‘‘g’’ accounts for

correlations in performance between all cognitive tasks, with

residual differences across tasks reflecting task-specific fac-

tors. More controversially, on the basis of subsequent attempts

to measure ‘‘g’’ using tests that generate an intelligence quotient

(IQ), it has been suggested that population variables including

gender (Irwing and Lynn, 2005; Lynn, 1999), class (Burt, 1959,

1961; McManus, 2004), and race (Rushton and Jensen, 2005)

correlate with ‘‘g’’ and, by extension, with one’s genetically pre-

determined potential. It remains unclear, however, whether

population differences in intelligence test scores are driven by

heritable factors or by other correlated demographic variables

such as socioeconomic status, education level, and motivation

(Gould, 1981; Horn and Cattell, 1966). More relevantly, it is

questionable whether they relate to a unitary intelligence factor,
Ne
as opposed to a bias in testing paradigms toward particular

components of a more complex intelligence construct (Gould,

1981; Horn and Cattell, 1966; Mackintosh, 1998). Indeed, over

the past 100 years, there has been much debate over whether

general intelligence is unitary or composed of multiple factors

(Carroll, 1993; Cattell, 1949; Cattell and Horn, 1978; Johnson

and Bouchard, 2005). This debate is driven by the observation

that test measures tend to form distinctive clusters. When

combined with the intractability of developing tests that mea-

sure individual cognitive processes, it is likely that a more

complex set of factors contribute to correlations in performance

(Carroll, 1993).

Defining the biological basis of these factors remains a

challenge, however, due in part to the limitations of behavioral

factor analyses. More specifically, behavioral factor analyses

do not provide an unambiguous model of the underlying cogni-

tive architecture, as the factors themselves are inaccessible,

being measured indirectly by estimating linear components

from correlations between the performance measures of dif-

ferent tests. Thus, for a given set of behavioral correlations, there

are many factor solutions of varying degrees of complexity, all

of which are equally able to account for the data. This ambiguity

is typically resolved by selecting a simple and interpretable

factor solution. However, interpretability does not necessarily

equate to biological reality. Furthermore, the accuracy of any

factor model depends on the collection of a large number of pop-

ulation measures. Consequently, the classical approach to intel-

ligence testing is hampered by the logistical requirements of pen

and paper testing. It would appear, therefore, that the classical

approach to behavioral factor analysis is near the limit of its

resolution.

Neuroimaging has the potential to provide additional con-

straint to behavioral factor models by leveraging the spatial

segregation of functional brain networks. For example, if one

homogeneous system supports all intelligence processes, then

a common network of brain regions should be recruited when-

ever difficulty increases across all cognitive tasks, regardless

of the exact stimulus, response, or cognitive process that is

manipulated. Conversely, if intelligence is supported by multiple

specialized systems, anatomically distinct brain networks

should be recruited when tasks that load on distinct intelligence

factors are undertaken. On the surface, neuroimaging results

accord well with the former account. Thus, a common set of

frontal and parietal brain regions is rendered when peak activa-

tion coordinates from a broad range of tasks that parametrically

modulate difficulty are smoothed and averaged (Duncan and

Owen, 2000). The same set of multiple demand (MD) regions is

activated during tasks that load on ‘‘g’’ (Duncan, 2005; Jung
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and Haier, 2007), while the level of activation within frontoparietal

cortex correlates with individuals differences in IQ score (Gray

et al., 2003). Critically, after brain damage, the size of the lesion

within, but not outside of, MD cortex is correlated with the esti-

mated drop in IQ (Woolgar et al., 2010). However, these results

should not necessarily be equated with a proof that intelligence

is unitary. More specifically, if intelligence is formed frommultiple

cognitive systems and one looks for brain responses during

tasks that weigh most heavily on the ‘‘g’’ factor, one will most

likely corecruit all of those functionally distinct systems. Similarly,

by rendering brain activation based on many task demands,

one will have the statistical power to render the networks

that are most commonly recruited, even if they are not always

corecruited. Indeed, there is mounting evidence demonstrating

that different MD regions respond when distinct cognitive

demands are manipulated (Corbetta and Shulman, 2002;

D’Esposito et al., 1999; Hampshire and Owen, 2006; Hampshire

et al., 2008, 2011; Koechlin et al., 2003; Owen et al., 1996; Pet-

rides, 2005). However, such a vast array of highly specific func-

tional dissociations have been proposed in the neuroimaging

literature as a whole that they often lack credibility, as they fail

to account for the broader involvement of the same brain regions

in other aspects of cognition (Duncan and Owen, 2000; Hamp-

shire et al., 2010). The question remains, therefore, whether intel-

ligence is supported by one or multiple systems, and if the latter

is the case, which cognitive processes those systems can most

broadly be described as supporting. Furthermore, even if

multiple functionally distinct brain networks contribute to intelli-

gence, it is unknown whether the capacities of those networks

are independent or are related to the same set of diffuse biolog-

ical factors that modulate general neural efficiency. It is unclear,

therefore, whether the pattern of individual differences in intelli-

gence reflects the functional organization of the brain.

Here, we address the question of whether human intelligence

is best conceived of as an emergent property of functionally

distinct brain networks using factor analyses of brain imag-

ing, behavioral, and simulated data. First, we break MD cortex

down into its constituent functional networks by factor

analyzing regional activation levels during the performance of

12 challenging cognitive tasks. Then, we build a model, based

on the extent to which the different functional networks are

recruited during the performance of those 12 tasks, and deter-

mine how well that model accounts for cross-task correlations

in performance in a large (n = 44,600) population sample.

Factor solutions, generated from brain imaging and behavioral

data, are compared directly, to answer the question of whether

the same set of cognitive entities is evident in the functional

organization of the brain and in individual differences in perfor-

mance. Simulations, based on the imaging data, are used to

determine the extent to which correlations between first-order

behavioral components are predicted by cognitive tasks re-

cruiting multiple functional brain networks, and the extent to

which those correlations may be accounted for by a spatially

diffuse general factor. Finally, we examine whether the behav-

ioral components of intelligence show a degree of indepen-

dence, as evidenced by dissociable correlations with the types

of questionnaire variable that ‘‘g’’ has historically been associ-

ated with.
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RESULTS AND DISCUSSION

Identifying Functional Networks within MD Cortex
Sixteen healthy young participants undertook the cognitive

battery in the MRI scanner. The cognitive battery consisted of

12 tasks, which, based on well-established paradigms from

the neuropsychology literature, measured a range of the types

of planning, reasoning, attentional, and working memory skills

that are considered akin to general intelligence (see Supple-

mental Experimental Procedures available online). The activation

level of each voxel within MD cortex was calculated separately

for each task relative to a resting baseline using general linear

modeling (see Supplemental Experimental Procedures) and the

resultant values were averaged across participants to remove

between-subject variability in activation—for example, due to

individual differences in regional signal intensity.

The question of how many functionally distinct networks were

apparent within MD cortex was addressed using exploratory

factor analysis. Voxels within MD cortex (Figure 1A) were

transformed into 12 vectors, one for each task, and these were

examined using principal components analysis (PCA), a factor

analysis technique that extracts orthogonal linear components

from the 12-by-12 matrix of task-task bivariate correlations.

The results revealed two ‘‘significant’’ principal components,

each of which explained more variability in brain activation than

was contributed by any one task. These components accounted

for �90% of the total variance in task-related activation across

MD cortex (Table S1). After orthogonal rotation with the Varimax

algorithm, the strengths of the task-component loadings were

highlyvariableandeasilycomprehensible (Table1andFigure1B).

Specifically, all of the tasks inwhich information had tobeactively

maintained in short-term memory, for example, spatial working

memory, digit span, and visuospatial working memory, loaded

heavily on one component (MDwm). Conversely, all of the tasks

in which information had to be transformed in mind according

to logical rules, for example, deductive reasoning, grammatical

reasoning, spatial rotations, and color-word remapping, loaded

heavily on the other component (MDr). When factor scores

were generated at each voxel using regression and projected

back onto the brain, two clearly defined functional networks

were rendered (Figure 1D). Thus, the insula/frontal operculum

(IFO), the superior frontal sulcus (SFS), and the ventral portion

of the anterior cingulate cortex/ presupplementary motor area

(ACC/preSMA) had greater MDwm component scores, whereas

the inferior frontal sulcus (IFS), inferior parietal cortex (IPC), and

the dorsal portion of the ACC/preSMA had greater MDr compo-

nent scores. When the PCA was rerun with spherical regions of

interest (ROIs) centered on each MD subregion, with radii that

varied from 10 to 25 mm in 5 mm steps and excluding voxels

that were on average deactivated, the task loadings correlated

with those from the MD mask at r > 0.95 for both components

and at all radii. Thus, the PCA solution was robust against varia-

tions in the extent of the ROIs. When data from the whole brain

were analyzed using the same method, three significant compo-

nentswere generated, the first twoofwhich correlatedwith those

from the MD cortex analysis (MDr r = 0.76, MDwm r = 0.83),

demonstrating that these were the most prominent active-state

networks in the brain. The factor solution was also reliable at
.



Figure 1. Factor Analyzing Functional Brain

Imaging Data from within Multiple Demand

Cortex

(A) The MD cortex ROIs.

(B) PCA of the average activation patterns within

MD cortex for each task (x axis reports task-

component loading).

(C) PCA with each individual’s data included as

separate columns (error bars report SEM).

(D) Component scores from the analysis of MD

task-related activations averaged across individ-

uals. Voxels that loaded more heavily on the

MDwm component are displayed in red. Voxels

that loaded more heavily on the MDr network are

displayed in blue.

(E) T contrasts of component scores against zero

from the PCA with individual data concatenated

into 12 columns (FDR corrected at p < 0.05 for all

MD voxels).
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the individual subject level. Rerunning the same PCA on each

individual’s data generated solutionswith two significant compo-

nents in 13/16 cases. There was one three-component solution

and two four-component solutions. Rerunning the two-compo-

nent PCAwith each individual’s data set included as 12 separate

columns (an approach that did not constrain the same task to

load on the same component across participants) demonstrated

that the pattern of task-component loadings was also highly reli-

able at the individual subject level (Figure 1C). In order to test the

reliability of the functional networks across participants, the data

were concatenated instead of averaged into 12 columns (an

approach that does not constrain the same voxels to load on

the same components across individuals), and component
Neuron 76, 1225–1237, De
scores were estimated at each voxel and

projected back into two sets of 16 brain

maps. When t contrasts were calculated

against zero at the group level, the same

MDwm and MDr functional networks

were rendered (Figure 1E).

While the PCA works well to identify the

number of significant components, a

potential weakness for this method is

that the unrotated task-component load-

ings are liable to be formed from mixtures

of the underlying factors and are heavily

biased toward the component that is ex-

tracted first. This weakness necessitates

the application of rotation to the task-

component matrix; however, rotation is

not perfect, as it identifies the task-

component loadings that fit an arbitrary

set of criteria designed to generate the

simplest and most interpretable solution.

To deal with this potential issue, the task-

functional network loadings were recalcu-

lated using independent component anal-

ysis (ICA), an analysis technique that

exploits the more powerful properties of
statistical independence to extract the sources from mixed

signals. Here, we used ICA to extract two spatially distinct func-

tional brain networks using gradient ascent toward maximum

entropy (code adapted fromStone andPorrill, 1999). The resultant

components were broadly similar, although not identical, to those

from the PCA (Table 1). More specifically, all tasks loaded posi-

tively on both independent brain networks but to highly varied

extents, with the short-term memory tasks loading heavily on

one component and the tasks that involved transforming informa-

tion according to logical rules loading heavily on the other. Based

on these results, it is reasonable to conclude that MD cortex is

formed from at least two functional networks, with all 12 cognitive

tasks recruiting both networks but to highly variable extents.
cember 20, 2012 ª2012 Elsevier Inc. 1227



Table 1. PCA and ICA of Activation Levels in 2,275 MD Voxels

during the Performance of 12 Cognitive Tasks

PCA ICA

MDr MDwm MDr MDwm

Self-ordered search 0.38 0.69 1.45 3.26

Visuospatial working

memory

0.27 0.84 1.24 2.68

Spatial span 0.17 0.86 0.51 2.23

Digit span 0.28 0.76 0.76 2.20

Paired associates 0.56 0.62 1.90 1.97

Spatial planning 0.58 0.50 2.43 2.74

Feature match 0.68 0.49 2.00 0.88

Interlocking polygons 0.74 0.31 2.11 0.61

Verbal reasoning 0.78 0.15 2.62 0.60

Spatial rotation 0.75 0.44 2.86 1.88

Color-word remapping 0.69 0.42 3.07 0.95

Deductive reasoning 0.90 0.18 3.98 0.19

PCA/ICA correlation MDr r = 0.92

PCA/ICA correlation MDwm r = 0.81

Table 2. Task-Component Loadings from the PCA of Internet

Data with Orthogonal Rotation

1 (STM) 2 (Reasoning) 3 (Verbal)

Spatial span 0.69 0.22

Visuospatial working memory 0.69 0.21

Self-ordered search 0.62 0.16 0.16

Paired associates 0.58 0.25

Spatial planning 0.41 0.45

Spatial rotation 0.14 0.66

Feature match 0.15 0.57 0.22

Interlocking polygons 0.54 0.3

Deductive reasoning 0.19 0.52 �0.14

Digit span 0.26 �0.2 0.71

Verbal reasoning 0.33 0.66

Color-word remapping 0.22 0.35 0.51
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The Relationship between the Functional Organization
of MD Cortex and Individual Differences in Intelligence:
Permutation Modeling
A critical question is whether the loadings of the tasks on the

MDwm andMDr functional brain networks form a good predictor

of the pattern of cross-task correlations in performance

observed in the general population. That is, does the same set

of cognitive entities underlay the large-scale functional organiza-

tion of the brain and individual differences in performance? It is

important to note that factor analyses typically require many

measures. In the case of the spatial factor analyses reported

above, measures were taken from 2,275 spatially distinct ‘‘vox-

els’’ within MD cortex. In the case of the behavioral analyses,

we used scores from �110,000 participants who logged in to

undertake Internet-optimized variants of the same 12 tasks. Of

these,�60,000 completed all 12 tasks and a post task question-

naire. After case-wise removal of extreme outliers, null values,

nonsense questionnaire responses, and exclusion of partici-

pants above the age of 70 and below the age of 12, exactly

44,600 data sets, each composed of 12 standardized task

scores, were included in the analysis (see Experimental

Procedures).

The loadings of the tasks on the MDwm and MDr networks

from the ICA were formed into two vectors. These were re-

gressed onto each individual’s set of 12 standardized task

scores with no constant term. When each individual’s MDwm

and MDr beta weights (representing component scores) were

varied in this manner, they centered close to zero, showed no

positive correlation (MDwm mean beta = 0.05 ± 1.78; MDr

mean beta = 0.11 ± 2.92; MDwm-MDr correlation r = �0.20),

and, importantly, accounted for 34.3% of the total variance in

performance scores. For comparison, the first two principal

components of the behavioral data accounted for 36.6% of the

variance. Thus, the model based on the brain imaging data

captured close to the maximum amount of variance that could
1228 Neuron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc
be accounted for by the two best-fitting orthogonal linear

components. The average test-retest reliability of the 12 tasks,

collected in an earlier Internet cohort (Table S2), was 68%.

Consequently, the imaging ICA model predicted >50% of the

reliable variance in performance. The statistical significance of

this fit was tested against 1,000 permutations, in which the

MDwm and MDr vectors were randomly rearranged both within

and across vector prior to regression. The original vectors

formed a better fit than the permuted vectors in 100% of cases,

demonstrating that the brain imaging model was a significant

predictor of the performance data relative to models with the

same fine-grained values and the same level of complexity.

Two further sets of permutation tests were carried out in which

one vector was held constant and the other randomly permuted

1,000 times. When the MDwm vector was permuted, the original

vectors formed a better fit in 100% of cases. When the MDr

vector was permuted, the original vectors formed a better fit in

99.3% of cases. Thus, both the MDwm and the MDr vectors

were significant predictors of individual differences in behavioral

performance.

The Relationship between the Functional Organization
of MD Cortex and Individual Differences in Intelligence:
Similarity of Factor Solutions
Exploratory factor analysis was carried out on the behavioral

data using PCA. There were three significant behavioral compo-

nents that each accounted for more variance than was contrib-

uted by any one test (Table S3) and that together accounted

for 45% of the total variance. After orthogonal rotation with the

Varimax algorithm, the first two components showed a marked

similarity to the loadings of the tasks on the MDwm and MDr

networks (Table 2). Thus, the first component (STM) included

all of the tasks in which information was held actively on line in

short-termmemory, whereas the second component (reasoning)

included all of the tasks in which information was transformed in

mind according to logical rules. Correlation analyses between

the task to functional brain network loadings and the task to

behavioral component loadings confirmed that the two

approaches generated broadly similar solutions (STM-MDwm
.



Figure 2. Localizing the Functional-Ana-

tomical Correlates of the Verbal Component

When task-component loadings for the verbal

factor from the behavioral analysis were stan-

dardized and used as a predictor of activation

within the whole brain, a left lateralized network

was rendered, including the left inferior frontal

gyrus, and temporal lobe regions bilaterally

(p < 0.05 FDR corrected for the whole brain mass).
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r = 0.79, p < 0.001; reasoning-MDr r = 0.64, p < 0.05). The third

behavioral component was readily interpretable and easily

comprehensible, accounting for a substantial proportion of the

variance in the three tasks that used verbal stimuli (Table 2),

these being digit span, verbal reasoning, and color-word remap-

ping. A relevant question regards why there was no third network

in the analysis of the MD cortex activation data. One possibility

was that a spatial equivalent of the verbal component did exist

in MD cortex but that it accounted for less variance than was

contributed by any one task in the imaging analysis. Extracting

three-component PCA and ICA solutions from the imaging

data did not generate an equivalent verbal component, a result

that is unsurprising, as a defining characteristic of MD cortex is

its insensitivity to stimulus category (Duncan and Owen, 2000).

A more plausible explanation was that the third behavioral

component had a neural basis in category-sensitive brain

regions outside of MD cortex. In line with this view, the task-

factor loadings from the third behavioral component correlated

closely with those from the additional third component extracted

from the PCA of all active voxels within the brain (r = 0.82,

p < 0.001). In order to identify brain regions that formed a likely

analog of the verbal component, the task-component loadings

were standardized so that they had unit deviation and zero

mean and were used to predict activation unconstrained within

the whole brain mass (see Experimental Procedures). Regions

including the left inferior frontal gyrus and the bilateral temporal

lobes were significantly more active during the performance of

tasks that weighed on the verbal component (Figure 2). This

set of brain regions had little overlap with MD cortex, an obser-

vation that was formalized using t tests on themean beta weights

from within each of the anatomically distinct MD cortex ROIs.

This liberal approach demonstrated that none of the MD ROIs

were significantly more active for tasks that loaded on the verbal

component (p > 0.05, uncorrected and one tailed).

Determining the Likely Neural Basis of Higher-Order
Components
Based on this evidence, it is reasonable to infer that the

behavioral factors that underlie correlations in an individual’s
Neuron 76, 1225–1237, De
performance on tasks of the type typically

considered akin to intelligence have

a basis in the functioning of multiple brain

networks. This observation allows novel

insights to be derived regarding the likely

basis of higher-order components. More

specifically, in classical intelligence

testing, first-order components gener-
ated by factor analyzing the correlations between task scores

are invariably correlated positively if allowed to rotate into their

optimal oblique orientations. A common approach is to under-

take a second-order factor analysis of the correlations between

the obliquely orientated first-order components. The resultant

second-order component is often denoted as ‘‘g.’’ This

approach is particularly useful when tasks load heavily on

multiple components, as it can simplify the task to first-order

component weightings, making the factor solution more readily

interpretable. A complication for this approach, however, is

that the underlying source of this second-order component is

ambiguous. More specifically, while correlations between

first-order components from the PCA may arise because the

underlying factors are themselves correlated (for example, if

the capacities of the MDwm and MDr networks were influenced

by some diffuse factor like conductance speed or plasticity),

they will also be correlated if there is ‘‘task mixing,’’ that is,

if tasks tend to weigh on multiple independent factors. In

behavioral factor analysis, these accounts are effectively indis-

tinguishable as the components or latent variables cannot be

measured directly. Here, we have an objective measure of the

extent to which the tasks are mixed, as we know, based on the

functional neuroimaging data, the extent to which the tasks

recruit spatially separated functional networks relative to rest.

Consequently, it is possible to subdivide ‘‘g’’ into the proportion

that is predicted by the mixing of tasks on multiple functional

brain networks and the proportion that may be explained by

other diffuse factors (Figure 3).

Two simulated data sets were generated; one based on the

loadings of the tasks on theMDwm andMDr functional networks

(2F) and the other including task activation levels for the verbal

network (3F). Each of the 44,600 simulated ‘‘individuals’’ was

assigned a set of either two (2F) or three (3F) factor scores using

a random Gaussian generator. Thus, the underlying factor

scores represented normally distributed individual differences

and were assumed to be completely independent in the simula-

tions. The 12 task scores were assigned for each individual

by multiplying the task-functional network loadings from the

ICA of the neuroimaging data by the corresponding, randomly
cember 20, 2012 ª2012 Elsevier Inc. 1229



Figure 3. Determining Whether Cross-component Correlations in the Behavioral Factor Analysis Are Accounted for by the Tasks Recruiting

Multiple Independent Functional Brain Networks

Acognitive taskcanmeasureacombinationof noise, task-specificcomponents,andcomponents thataregeneral, contributing to theperformanceofmultiple tasks.

In the current study, therewere three first-order components: reasoning, short-termmemory (STM), and verbal processing. In classical intelligence testing, the first-

order components are invariably correlated positively when allowed to rotate into oblique orientations. A factor analysis of these correlations may be undertaken to

estimate a second-order component and this is generally denoted as ‘‘g.’’ ‘‘g’’ may be generated from distinct sources: task mixing, the tendency for tasks to

corecruitmultiple systems, anddiffuse factors that contribute to the capacities of all of those systems.Whensimulationswere built based on thebrain imagingdata,

the correlations between the first-order components from the behavioral study were entirely accounted for by tasks corecruiting multiple functional networks.

Neuron

Fractionating Human Intelligence
generated, factor score and summating the resultant values. The

scores were then standardized for each task and noise was

added by adding the product of randomly generated Gaussian

noise, the test-retest reliabilities (Table S2), and a noise level

constant. A series of iterative steps were then taken, in which

the noise level constant was adjusted until the summed commu-

nalities from the simulated and behavioral PCA solutions were

closely matched in order to ensure that the same total amount

of variance was explained by the first-order components. This

processwas repeated 20 times to generate a standard deviation.

(Note that matching the total variance explained by the first-

order components in this manner does not bias the result; for

example, if each task loaded on just one first-order component,

then the first-order components would not be correlated.)

The results revealed a significant conformity (Table S4)

between the task-to-component loadings from the PCA models

of simulated data and the Internet behavioral data (simulated to

real correlations: 2F model STM r = 0.56, p < 0.05 and reasoning

r = 0.74, p < 0.005; 3F model STM r = 0.64 p < 0.05, reasoning

r = 0.77, p < 0.005, and verbal r = 0.53, p < 0.05). More impor-

tantly, the size of the correlations between the obliquely oriented

first-order components derived from the PCA of Internet data
1230 Neuron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc
and data simulated based on task-functional network activation

levels were almost identical for the 2F model (MDr-MDwm real

r = 0.47, simulated r = 0.46, SD ±0.01) and highly similar for

the 3F model (Figure 3) despite the underlying factors in the

simulated data set being completely independent. Conse-

quently, there was little requirement for a diffuse higher-order

‘‘g’’ factor once the tendency for tasks to corecruit multiple func-

tional brain networks was accounted for.

Dissociating Behavioral Components across Biological
and Demographic Variables
These results suggest that the cognitive systems that underlay

the STM, reasoning, and verbal components should have largely

independent capacities. We sought to confirm this prediction

by examining the correlations between the behavioral compo-

nents (STM, reasoning, and verbal) and questionnaire variables

that have previously been associated with general intelligence.

An in-depth discussion of the relationship between biological

or demographic variables and components of intelligence is

outside the scope of the current article and will be covered

elsewhere. Here, these correlations were used to leverage

dissociations, and the question of whether they are mediated
.



Figure 4. The Relationship of Behavioral Components to Age,

Education, and Frequency of Computer Games

The verbal component was less correlated than the STM and reasoning

components with age and frequency with which individuals played computer

games but was more correlated with education level.
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Ne
by unmeasured biological or demographic variables is not

relevant. The extents to which the questionnaire responses

predicted individual mean and component scores were esti-

mated using generalized linear models. In such a large popula-

tion sample, almost all effects are statistically significant

because uncertainty regarding the proximity of sample means

to population means approaches zero. Consequently, the true

measure of significance is effect size, and here we conformed

to Cohen’s notion (Cohen, 1988) that an effect of �0.2 SD units

represents a small effect,�0.5 amedium effect, and�0.8 a large

effect. The STM, reasoning, and verbal component scores were

highly dissociable in terms of their correlations with question-

naire variables. Age was by far the most significant predictor of

performance, with the mean scores of individuals in their sixties

�1.7 SD below those in their early twenties (Figure 4A). (Note that

in intelligence testing, 1 SD is equivalent to 15 IQ points.) The

verbal component scores showed a relatively late peak and

subtle age-related decline relative to the other two components.

In this respect, the STM and reasoning components can be

considered dissociated from the verbal component in terms of

their sensitivity to aging. Similarly, the mean score and the

STM and reasoning component scores showed small-medium

positive relationships with the frequency with which individuals

played computer games (�0.32 SD, �0.2 SD, and �0.3 SD,

respectively) (Figure 4B), whereas the relationship with the verbal

component was negligible. Conversely, while level of education

(calculated from those aged 20+) showed a small-medium-sized

positive relationship with the mean score (�0.33) and the verbal

score (0.32 SD), the STM score showed a smaller relationship

(0.23 SD), while the relationship with reasoning (0.12 SD)

was of negligible scale (Figure 4C). The STM and reasoning

components were also dissociated from each other. For

example, individuals who regularly suffer from anxiety (Figure 5A)

had significantly lower mean scores (0.21 SDs), a relationship

that was most pronounced for the STM component (0.35 SDs),

with negligible reasoning (0.06 SDs) and verbal (�0.16 SDs)

effect sizes. Similarly, while the differences between male and

female participants’ mean (0.1 SD), verbal (0.03), and reasoning

scores (�0.03) were negligible, males showed a small advantage

over females on the STM component score (0.2 SD) (Figure 5B).

Other significant factors included amount smoked (Figure 6A),

with smokers performing worse than nonsmokers on the mean

score (�0.19 SD units), a difference that was most pronounced

for the STM component (STM z 0.19 SD, reasoning z 0.09

SD, and verbal z 0.05 SD). By contrast, alcohol consumption

and caffeine intake showed negligible effect sizes for mean

and component scores. Finally, geographical origin (grouped

by country of birth) showed small-medium-sized relationships

with a mean score (0.37 SD) that primarily favored individuals

from countries in which English is the first language (Figure 6B).

The largest relationship between component score and geo-

graphical origin was for the verbal component, which spanned

�0.52 SD units, with smaller relationships evident for the

reasoning (0.40 SD) and STM (0.23 SD) scores. (Note that rerun-

ning the behavioral PCA and including only individuals for

whom English was the first language produced the same

three-component solution.) Taken together, this combination of

co-relationship and dissociation of the STM, reasoning, and
uron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc. 1231



Figure 5. The Relationship of Behavioral Components to Anxiety

and Gender

The STM component was correlated with self-reported frequency of anxiety

and with gender, whereas the reasoning component was not.

Figure 6. The Relationship of Behavioral Components to Amount

Smoked and Country of Birth
The relationship between amount smoked and performance was of significant

scale for the STM component score. Region of birth was significantly related to

all three component scores, with the greatest correlation being for the verbal

component.
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verbal scores supports the view that these components have

a basis in relatively independent systems, while demonstrating

how a multifactor model can provide a more informative and

balanced account of population differences in intelligence.

Behavioral Pilot: Comparing the Three Behavioral
Components to the ‘‘g’’ Factor
Data from a pilot study were examined in order to confirm that

the cognitive battery generated scores that correlated with ‘‘g’’

as measured by classic IQ testing. Thirty-five young healthy
1232 Neuron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc
right-handed participants undertook the 12 cognitive tasks

under controlled laboratory conditions followed by one of the

most commonly applied classic pen and paper IQ tests—the

Cattell Culture Fair (scale II). Scores were standardized so that

each of the cognitive tasks had zero mean and unit deviation

across participants. For each participant, the standardized

scores were then averaged across the tasks. A significant bivar-

iate correlation was evident between the mean standardized

scores and performance on the Cattell Culture Fair intelligence

test (r = 0.65, p < 0.001). Component scores were calculated

for the 35 pilot participants using regression with the test-

component loadings from the orthogonal PCA of the Internet

cohort’s data. Both the STM and the reasoning component

scores correlated significantly with the Cattell Culture Fair score,

whereas the verbal component showed a positive subthreshold

trend (STM r = 0.52, p < 0.001; reasoning r = 0.34, p < 0.05; verbal
.
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r = 0.26, p = 0.07). Numerically, the strongest correlation was

generated by averaging the STM and reasoning component

scores (STM and reasoning r = 0.65, p < 0.001; STM and verbal

r = 0.54, p < 0.001; verbal and reasoning r = 0.377, p < 0.05).

When second-order component scores were generated for the

pilot participants using the obliquely oriented factor model

from the Internet cohort, they also correlated significantly with

Cattell Culture Fair score (r = 0.64, p < 0.001). These results

suggest that the STM and reasoning components relate more

closely than the verbal component to ‘‘g’’ as defined by classic

IQ testing.

General Discussion
The results presented here provide evidence to support the

view that human intelligence is not unitary but, rather, is formed

from multiple cognitive components. These components reflect

the way in which the brain regions that have previously been

implicated in intelligence are organized into functionally special-

ized networks and, moreover, when the tendency for cognitive

tasks to recruit a combination of these functional networks is

accounted for, there is little evidence for a higher-order intelli-

gence factor. Further evidence for the relative independence

of these componentsmay be drawn from the fact that they corre-

late with questionnaire variables in a dissociable manner. Taken

together, it is reasonable to conclude that human intelligence is

most parsimoniously conceived of as an emergent property of

multiple specialized brain systems, each of which has its own

capacity.

Historically, research into the biological basis of intelligence

has been limited by a circular logic regarding the definition of

what exactly intelligence is. More specifically, general intelli-

gence may sensibly be defined as the factor or factors that

contribute to an individual’s ability to perform across a broad

range of cognitive tasks. In practice, however, intelligence is

typically defined as ‘‘g,’’ which in turn is defined as the measure

taken by classical pen and paper IQ tests such as Raven’s

matrices (Raven, 1938) or the Cattell Culture Fair (Cattell,

1949). If a more diverse set of paradigms are applied and, as

a consequence, a more diverse set of first-order components

are derived, the conventional approach is to run a second-order

factor analysis in order to generate a higher-order component. In

order for the battery to be considered a goodmeasure of general

intelligence, this higher-order component should correlate with

‘‘g’’ as measured by a classical IQ test. The results presented

here suggest that such higher-order constructs should be used

with caution. On the one hand, a higher-order component may

be used to generate a more interpretable first-order factor solu-

tion, for example, when cognitive tasks load heavily on multiple

components. On the other hand, the basis of the higher-order

component is ambiguous andmay be accounted for by cognitive

tasks corecruiting multiple functionally dissociable brain net-

works. Consequently, to interpret a higher-order component as

representing a dominant unitary factor is misleading.

Nonetheless, one potential objection to the results of the

current study could be that while the 12 tasks load on common

behavioral components, by the most commonly applied defini-

tion, these components do not relate to general intelligence

unless they generate a second-order component that correlates
Ne
with ‘‘g.’’ From this perspective, only the higher-order compo-

nent may truly be considered intelligence, with the first-order

components being task specific. In the current study, this objec-

tion is implausible for several reasons. First, a cognitive factor

that does not relate to such general processes as planning,

reasoning, attention, and short-term memory would, by any

sensible definition, be a very poor candidate for general intelli-

gence. Furthermore, many of the tasks applied here were based

on paradigms that either have been previously associated with

general intelligence or form part of classical intelligence testing

batteries. In line with this view, analysis of data from our pilot

study shows that when a second-order component is generated,

it correlates significantly with ‘‘g,’’ and yet, based on the imaging

data, that higher-order component is greatly reduced, as it may

primarily be accounted for by tasks corecruiting multiple func-

tionally dissociable brain networks. Moreover, MD cortex, which

is both active during and necessary for the performance of

classic intelligence tests, was highly activated during the perfor-

mance of this cognitive battery but was divided into two func-

tional networks. Thus, the tasks applied here both recruited

and functionally fractionated the previously identified neural

correlates of ‘‘g.’’ It should also be noted that this battery of tasks

is, if anything, more diverse than those applied in classical IQ

tests and, in that respect, may be considered at least as able

to capture general components that contribute to a wide range

of tasks. For example, Raven’s matrices (Raven, 1938) employ

variants on one class of abstract reasoning problem, the Cattell

uses just four types of problem, while the WAIS-R (Weschler,

1981) employs 11 subtests. Thus, it is clearly the case that by

either definition, the tasks applied here are related to general

intelligence.

Another potential objection is that the functional brain

networks may not have been defined accurately enough

because they form clearly defined clusters and, therefore, are

negatively correlated across space. Perhaps the ICA underesti-

mated this spatial segregation, causing voxels from one network

to distort the task-component loadings from the other andmask-

ing the contribution of a diffuse higher-order ‘‘g’’ factor. This

objection is highly unlikely for several reasons. First, while ICA

seeks to maximize independence, it does not necessarily derive

completely independent components. For example, in the

current study, theMDwmandMDr components did show the ex-

pected negative correlation across voxels (r = �0.19). Second,

such a close conformity between the second-order correlations

from the simulated and behavioral models would have been

highly unlikely to occur by chance alone if the ICA had failed.

Furthermore, if the networks are spatially separable, then it

should be possible to take relatively unmixed measures of their

task-related activations by examining the centers of each

cluster, where there is minimal network overlap. For example,

when mean task activation levels were extracted from 5 mm

spherical ROIs centered on peak IFO and IFS coordinates within

theMDwmandMDr networks bilaterally, amarked double disso-

ciation was evident across tasks. Specifically, there was either

strong coactivation of regions or strong activation in one region

and virtually no activation in the other dependent on the task

context (Table S5). This is clearly the pattern of results that

would be expected if the ROIs were placed exclusively within
uron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc. 1233
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functionally dissociable and spatially separable networks. None-

theless, when the 2F simulations were rerun based on these IFS

and IFO activation levels, the second-order correlation between

the estimated oblique components was not diminished but,

rather, formed a precise match to the Internet behavioral data

(r = 0.47, SD ± 0.02). Thus, while the contribution of diffuse

factors should not be entirely discounted, the results accord

particularly closely with the view that the higher-order ‘‘g’’

component is primarily accounted for by cognitive tasks recruit-

ing multiple functionally dissociable brain networks.

Indeed, from a phenomenological perspective, the idea that

tasks tend to corecruit multiple functional brain networks makes

intuitive sense, as generating a task that depends on any single

cognitive process is likely to be rather intractable. Consider

a simple working memory task, in which the spatial locations

of a sequence of flashes must be observed, maintained, and

repeated (spatial span). Even in this simple context, the partici-

pant must comprehend the written instructions, otherwise,

they may report the correct locations but in the incorrect

sequence. More importantly, people often apply chunking strat-

egies when encoding information in short-term memory in order

to generate a more efficient memory trace. For example, they

may note that the flashes form the outline of a geometric shape.

Such ‘‘chunking’’ strategies are a form of logical transformation

and are known to recruit the IFS (Bor et al., 2001). Thus, even

in the most simple of task contexts, all three of the cognitive

systems identified in the current study would play a role but to

varying extents.

This interplay of processes raises an interesting point

regarding what exactly is meant by the term ‘‘functional net-

work.’’ No doubt, it is the case that the functional networks

identified here often interact closely during the performance of

complex cognitive tasks and, consequently, could be consid-

ered to form specialized subcomponents of a broader cognitive

system. Indeed, from this perspective, the higher-order ‘‘g’’

factor that may be generated from hierarchical analysis of the

behavioral data may be described as representing a higher-

order functional network formed from the corecruitment of the

MDwm and the MDr subnetworks. Such nested architecture is

likely to form an accurate description of the functional organiza-

tion of the brain (Bullmore and Sporns, 2009). Nonetheless,

activity across the MDwm and MDr brain regions was not posi-

tively correlated (Table S5). More importantly, the combination

of corecruitment and strong double dissociation across task

contexts is in close concordance with the proposed criteria for

qualitatively dissociable brain systems (Henson, 2006). Further-

more, the fractionation of MD subregions reported here is highly

replicable and, consequently, is unlikely to be specific to the

choice of tasks. For example, similar functional networks have

recently been reported when spontaneous fluctuations in

resting-state activity are analyzed using ICA and graph theory

(Dosenbach et al., 2008). More importantly, the conformity

between the behavioral and imaging factor solutions supports

the view that they make independent contributions to cognitive

ability. In further support of this view, previous studies have

demonstrated that functional activation within the IFO/preSMA

and IFS/IPC and their associated cognitive processes are dif-

ferentially affected by neurological disorders, pharmacological
1234 Neuron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc
interventions, and genotype (Hampshire and Owen, 2010).

Thus, the MDr and MDwm networks are also dissociable with

respect to their sensitivity to biological factors that modulate

individual differences in cognition.

One of the reviewers of this paper suggested that an additional

‘‘g’’ network might exist within MD but would only be recruited at

the highest levels of demand. Perhaps activation when perform-

ing at lower levels of demand could mask this unitary high-load

network? This interpretation is unlikely, as the tasks were specif-

ically designed to be taxing. More specifically, they used a

combination of speeded/response-driven designs and dynami-

cally adapting difficulty algorithms that kept participants working

at a high cognitive load, yet only 10% of the cross-task variance

within MD cortex remained unexplained by the two-component

model. Moreover, the subdivision ofMD into functionally special-

ized networks accords particularly well with results from pre-

vious studies that have systematically varied difficulty within

task by manipulating specific cognitive demands. For example,

when the number of concurrent rules was manipulated in a chal-

lenging nonverbal reasoning task, there was a disproportionate

increase in the response of the IFS (Hampshire et al., 2011).

Conversely, when the difficulty of a target-distractor decision

was manipulated in a task that required morphed stimuli to be

comparedwithmaintained target objects, therewas a dispropor-

tionate increase in the response of the IFO (Hampshire et al.,

2008). Cross-study comparisons of this type may be more

precisely quantified using factor analysis. When brain maps de-

picting difficulty effects from these previous studies were added

as extra columns in the PCA of task-related activations, the rule

complexity manipulation loaded selectively on the MDr network

(MDr = 0.79, MDwm = 0.06), whereas the object discrimination

manipulation loaded selectively on the MDwm network (MDr =

0.18, MDwm = 0.64). Thus, when specific cognitive demands

are systematically varied, MD cortex fractionates into the same

two functional networks.

This latter analysis highlights a salient issue within the current

literature on frontoparietal function. There are a great many

process-specific models that do not explicitly account for the

broader involvement of MD cortex in cognition. A major chal-

lenge when interpreting this literature is how to group cognitive

processes and functional activations that are reported in isola-

tion into those that are alike, thereby producing a more manage-

able set of cognitive entities. To this end, the STM, reasoning,

and verbal components may provide a sensible starting point,

as they bridge between classical and contemporary models

from the cognitive psychology, intelligence, and neuroimaging

literatures. For example, the association of the STM and

reasoning components with subregions of MD cortex (Duncan

et al., 2000; Woolgar et al., 2010) suggests that they relate

more closely to the general intelligence construct ‘‘g’’ than the

verbal component. Results from the behavioral pilot study

provide tentative evidence for this, as both STM and reasoning

component scores were significantly correlated with IQ, but

the verbal component was not. A stronger confirmation of this

relationship in a larger population sample would form the basis

of a sensible future study. In terms of functional localization,

the observed dissociation between the MDwm and MDr

networks accords closely with the growing evidence for a
.
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ventral-dorsal functional axis within frontoparietal cortex. In the

context of working memory, similar dissociations have been

reported during the maintenance of information in mind versus

the reorganization or transformation of that information (Bor

et al., 2001; Owen et al., 1996; Petrides, 2005). However, in addi-

tion to the ventral activation reported in those studies, the most

superior portion of the IFS ROI was also associated with short-

term memory here, a result that accords particularly well with

results from studies of spatial working memory (Courtney

et al., 1998). More broadly, the MDwm network closely resem-

bles the pattern of activation observed during other simple exec-

utive processes including target detection (Hampshire et al.,

2009), attentional switching (Hampshire and Owen, 2006), and

response inhibition (Aron et al., 2004). On a process level, we

believe that the common requirement in tasks that recruit the

MDwm network is the need to focus on and maintain task-rele-

vant information. Previously, we have suggested that the IFO

uses a relatively simple mechanism to support such processes,

rapidly adapting to represent those items, for example, expected

stimuli and planned responses that form the basis of the task

that the individual is currently focused on (Hampshire et al.,

2010). This representation would form the source of a top-

down signal that biases processing within posterior brain sys-

tems such as category-sensitive visual processing areas

(Desimone and Duncan, 1995). From this perspective, short-

term memory, focused attention, and response control are

facets of the same cognitive system. A testable prediction of

this hypothesis is that simple attentional tasks will not only pref-

erentially recruit the MDwm network, they will also load heavily

on the STM component in terms of performance.

It is particularly interesting that the mental transformation of

spatial, object, and verbal information shares a common

resource within a network of brain regions that includes the

IFS. Previous neuroimaging studies that have focused on varying

demands within any one of these domains accord well with this

finding. For example, dorsolateral prefrontal cortex activation is

evident during spatial planning (Williams-Gray et al., 2007) and

deductive reasoning (Hampshire et al., 2011). The results here

confirm this relationship in amore direct manner as the planning,

rotations, deductive reasoning, and verbal reasoning tasks all

loaded heavily on the same component in both the behavioral

and the neuroimaging analyses. Thus, on a process level, it

seems sensible to conclude that the MDr network forms

a module that is specialized for the transformation of information

in mind according to logical rules but that is insensitive to the

type or source of information that is transformed. This view is

compatible with the idea that the IFS is recruited during more

complex executive processes (Petrides, 2005) and accords

well with a two-stage model of working memory that assumes

that dorsolateral frontal lobe regions are recruited when informa-

tion is reordered in mind (Owen et al., 1996). A major challenge

for future studies will be to determine the neural mechanism by

which theMDr network supports such diverse logical processes.

The observation of a distinct verbal factor accords particularly

well with Cattell’s hypothesis that intelligence has a distinct

‘‘crystallized’’ component, which is dependent on the skills and

information that an individual acquires with experience (Cattell,

1949; Cattell and Horn, 1978; Vernon, 1964, 1965). More specif-
Ne
ically, in the current study, the verbal factor bears many of the

hallmarks of crystalized intelligence, being later to peak and

decline with age and being more correlated with education level

than the STM and reasoning factors. The fact that this compo-

nent is closely related to the verbal domain is a well documented,

but controversial, characteristic of crystalized intelligence and

highlights the ongoing debate over whether it represents the

amount of information a person has absorbed as proposed by

Cattell or the processing of information within the verbal domain

(Cattell, 1943; Vernon, 1964, 1965). With respect to this latter

question, the brain imaging data may offer some clues. The left

inferior frontal gyrus showed increased activation during tests

that loaded heavily on the verbal factor. This region plays

a role in the selection, retrieval, and maintenance of semantic

information (Wagner et al., 2001) and in the production and

comprehension of verbal information (Dronkers et al., 2007;

Just et al., 1996; Rogalsky and Hickok, 2011). Thus, it may be

the case that crystalized intelligence is correlated with both

types of process, as to some extent they share a common

resource within the frontal lobes. Here, the left inferior frontal

gyrus was recruited in conjunction with the posterior temporal

lobes bilaterally. Based on the prior literature, it seems reason-

able to suggest that this network of frontal and temporal brain

regions supports a mechanism that is common to both verbal

and semantic domains, the selective retrieval and maintenance

(Rogalsky and Hickok, 2011) of learnt information. Interestingly,

this same frontal lobe region has recently been implicated in

one of the most abstract forms of human intelligence, analogical

reasoning (Hampshire et al., 2011), in which distal associations

are used to transfer abstract rules between problem contexts

that differ at the concrete level. This most abstract of reasoning

processes was not assessed in the current study, and a testable

prediction is that the ability to cope with increased analogical

demand may be correlated with the verbal component score.

Is it possible that other factors contribute to general task

performance? In our opinion, this is most likely the case, as there

are many functional networks in the brain. For example, the

ability to adapt plans based on rewarding or punishing outcomes

is critical for optimally adaptive behavior and is known to depend

on neural circuitry including the orbitofrontal cortices (Hampshire

andOwen, 2006; Kringelbach, 2005; O’Doherty et al., 2001). This

type of executive process was not directly measured in the

current study. Such processes may be distinct from what we

typically consider to be general intelligence as defined by clas-

sical IQ testing, but they seem sensible inclusions in a multiple

component model of intelligent behavior. Nonetheless, the three

factors identified here reliably explain a large proportion of the

variability in performance on a broad range of the types of task

that would typically be considered akin to general intelligence.

They also functionally fractionate the set of brain regions that

are most commonly recruited across diverse task contexts and

that are most closely associated with ‘‘g.’’ Furthermore, the divi-

sion of tests between the three factors observed here is compre-

hensible from the perspective of influential models from both the

cognitive psychology and functional neuroimaging literatures.

Thus, these results provide strong evidence that human intelli-

gence is a construct that emerges from the functioning of

anatomically dissociable brain networks. When one considers
uron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc. 1235
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the high degree of variability in the correlations between the

questionnaire factors that have previously been associated

with ‘‘g’’ and the three component scores measured here, it

seems reasonable to suggest that intelligence is most informa-

tively quantified in terms of not one but multiple distinct abilities.

Future research should focus on whether individual differences

in component score can be related to individual differences in

the function or anatomy of the MDwm, MDr, and verbal

networks, with an emphasis on whether candidate genotypes

mediate such differences, which functional networks and cogni-

tive components are affected by neural assault or cognitive

decline, and the extents to which these components relate

to other popular measures of higher cognitive function includ-

ing inhibitory control, attentional switching, and analogical

reasoning.

EXPERIMENTAL PROCEDURES

The 12 cognitive tasks are described in detail in the Supplemental Experi-

mental Procedures and are available for evaluation at http://www.

cambridgebrainsciences.com. They were designed, based on well-estab-

lished paradigms from the cognitive neuroscience literature, to measure plan-

ning, reasoning, attention, and working memory abilities. In the behavioral

study, the entire battery of tasks took approximately 30 min to complete,

with each task calculating one outcome measure. In the fMRI study, the tasks

were identical to the behavioral versions except that functions for displaying

correct and incorrect feedback were disabled to avoid confounding effects

of variable error processing. The fMRI tasks were run in three 60 s blocks

with 16 s periods of rest, allowing activation during performance of the tasks

to be calculated relative to a resting baseline in the most statistically efficient

manner (Donaldson and Bucknar, 2001). In the imaging study, participants

practiced by undertaking the entire battery of Internet tasks once prior to

entering the scanner. Behavioral data were collected via the Internet between

September and December 2010. The experiment URL was originally adver-

tised in a New Scientist feature (Owen and Highfield, 2010), on the Discovery

Channel web site, in the Daily Telegraph, and on social networking web sites

including Facebook and Twitter. Subsequently, the URL proliferated via blogs

and social networks, with Google finding links to the trial URL on �3,000 web

pages at the time of submission. The 12 tasks were presented in a fixed order

(note, the behavioral components were unrelated to the task order) and on

completion of the trial participants filled out a demographic questionnaire.

Subsequently, they received a report showing their scores relative to the previ-

ously calculated normative data and were directed to a second web site,

where they were informed they could retake the tests and compare scores

with friends on Facebook. Details of the imaging and behavioral analyses

are included in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five tables and Supplemental Experimental

Procedures and can be found with this article online at http://dx.doi.org/

10.1016/j.neuron.2012.06.022.

ACKNOWLEDGMENTS

The authors would like to thank the participants of this study, without whose

overwhelming response this research would not have been possible and An-

drew Smith at Lucidity for keeping the web site running. We would like to thank

Kevin Symonds at the MRC-CBU for fielding technical questions, Adam

McLean at UWO for helping to run the fMRI tasks, and John Duncan for

providing the MD ROIs and invaluable feedback. R.R.H. was the editor of

the New Scientist when this study was conducted. This research was funded

by MRC grant U1055.01.002.00001.01 and the Canada Excellence Research

Chair Program.
1236 Neuron 76, 1225–1237, December 20, 2012 ª2012 Elsevier Inc
Accepted: June 4, 2012

Published: December 19, 2012

REFERENCES

Aron, A.R., Robbins, T.W., and Poldrack, R.A. (2004). Inhibition and the right

inferior frontal cortex. Trends Cogn. Sci. 8, 170–177.

Bor, D., Duncan, J., and Owen, A.M. (2001). The role of spatial configuration

in tests of working memory explored with functional neuroimaging. Scand.

J. Psychol. 42, 217–224.

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoret-

ical analysis of structural and functional systems. Nat. Rev. Neurosci. 10,

186–198.

Burt, C. (1959). Class differences in general intelligence: III. Br. J. Stat. Psychol.

12, 15–33.

Burt, C. (1961). Intelligence and social mobility. Br. J. Stat. Psychol. 14, 2–24.

Carroll, J.B. (1993). Human Cognitive Abilities: A Survey of Factor-Analytic

Studies (Cambridge: Cambridge University Press).

Cattell, R.B. (1943). The measurement of adult intelligence. Psychol. Bull. 40,

153–193.

Cattell, R.B. (1949). Culture Free Intelligence Test, Scale 1, Handbook

(Champaign, IL: Institute of Personality and Abilit).

Cattell, R.B., and Horn, J.L. (1978). A check on the theory of fluid and crystal-

ized intelligence with descriptions of new subtest designs. Journal of

Educational Measurement 15, 139–164.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences,

Second Edition (Hillsdale, NJ:: Lawrence Erlbaum Associates).

Corbetta, M., and Shulman, G.L. (2002). Control of goal-directed and stimulus-

driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215.

Courtney, S.M., Petit, L., Maisog, J.M., Ungerleider, L.G., and Haxby, J.V.

(1998). An area specialized for spatial workingmemory in human frontal cortex.

Science 279, 1347–1351.

D’Esposito, M., Postle, B.R., Ballard, D., and Lease, J. (1999). Maintenance

versus manipulation of information held in working memory: an event-related

fMRI study. Brain Cogn. 41, 66–86.

Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual

attention. Annu. Rev. Neurosci. 18, 193–222.

Donaldson, D., and Bucknar, R. (2001). Effective paradigm design. In

Functional MRI: An Introduction to Methods, P. Jezzard, P.M. Matthews,

and S.M. Smith, eds. (New York: Oxford University Press), pp. 177–195.

Dosenbach, N.U., Fair, D.A., Cohen, A.L., Schlaggar, B.L., and Petersen, S.E.

(2008). A dual-networks architecture of top-down control. Trends Cogn. Sci.

12, 99–105.

Dronkers, N.F., Plaisant, O., Iba-Zizen, M.T., and Cabanis, E.A. (2007). Paul

Broca’s historic cases: high resolution MR imaging of the brains of Leborgne

and Lelong. Brain 130, 1432–1441.

Duncan, J. (2005). Prefrontal cortex and Spearman’s g. InMeasuring theMind:

Speed, Control, and Age, J. Duncan, L.H. Phillips, and P. McLeod, eds.

(Oxford: Oxford University Press), pp. 249–272.

Duncan, J., andOwen, A.M. (2000). Common regions of the human frontal lobe

recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483.

Duncan, J., Seitz, R.J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell,

F.N., and Emslie, H. (2000). A neural basis for general intelligence. Science

289, 457–460.

Gould, S.J. (1981). The Mismeasure of Man (New York: Norton).

Gray, J.R., Chabris, C.F., and Braver, T.S. (2003). Neural mechanisms of

general fluid intelligence. Nat. Neurosci. 6, 316–322.

Hampshire, A., and Owen, A.M. (2006). Fractionating attentional control using

event-related fMRI. Cereb. Cortex 16, 1679–1689.

Hampshire, A., and Owen, A.M. (2010). Clinical studies of attention and

learning. In Attention and Associative Learning, C.J. Mitchell and M.E. Le

Pelley, eds. (Oxford: Oxford University Press), pp. 385–406.
.

http://www.cambridgebrainsciences.com
http://www.cambridgebrainsciences.com
http://dx.doi.org/10.1016/j.neuron.2012.06.022
http://dx.doi.org/10.1016/j.neuron.2012.06.022


Neuron

Fractionating Human Intelligence
Hampshire, A., Thompson, R., Duncan, J., and Owen, A.M. (2008). The target

selective neural response—similarity, ambiguity, and learning effects. PLoS

ONE 3, e2520.

Hampshire, A., Thompson, R., Duncan, J., and Owen, A.M. (2009). Selective

tuning of the right inferior frontal gyrus during target detection. Cogn. Affect.

Behav. Neurosci. 9, 103–112.

Hampshire, A., Chamberlain, S.R., Monti, M.M., Duncan, J., and Owen, A.M.

(2010). The role of the right inferior frontal gyrus: inhibition and attentional

control. Neuroimage 50, 1313–1319.

Hampshire, A., Thompson, R., Duncan, J., and Owen, A.M. (2011). Lateral

prefrontal cortex subregions make dissociable contributions during fluid

reasoning. Cereb. Cortex 21, 1–10.

Henson, R. (2006). Forward inference using functional neuroimaging: dissoci-

ations versus associations. Trends Cogn. Sci. 10, 64–69.

Horn, J.L., and Cattell, R.B. (1966). Refinement and test of the theory of fluid

and crystallized general intelligences. J. Educ. Psychol. 57, 253–270.

Irwing, P., and Lynn, R. (2005). Sex differences in means and variability on the

progressive matrices in university students: a meta-analysis. Br. J. Psychol.

96, 505–524.

Johnson, W., and Bouchard, T.J. (2005). The structure of human intelligence: It

is verbal, perceptual, and image rotation (VPR), not fluid and crystallized.

Intelligence 33, 393–416.

Jung, R.E., and Haier, R.J. (2007). The parieto-frontal integration theory (P-FIT)

of intelligence: converging neuroimaging evidence. Behav. Brain Sci. 30,

135–154, discussion 154–187.

Just, M.A., Carpenter, P.A., Keller, T.A., Eddy, W.F., and Thulborn, K.R. (1996).

Brain activation modulated by sentence comprehension. Science 274,

114–116.

Koechlin, E., Ody, C., and Kouneiher, F. (2003). The architecture of cognitive

control in the human prefrontal cortex. Science 302, 1181–1185.

Kringelbach, M.L. (2005). The human orbitofrontal cortex: linking reward to

hedonic experience. Nat. Rev. Neurosci. 6, 691–702.

Lynn, J. (1999). The effect of race and sex on physicians’ recommendations for

cardiac catheterization. J. Am. Geriatr. Soc. 47, 1390.

Mackintosh, N.J. (1998). IQ and Human Intelligence (Oxford: Oxford University

Press).

McManus, I.C. (2004). Measuring participation in UK medical schools: social

class data are problematic to interpret. BMJ 329, 800–801, author reply 801.
Ne
O’Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J., and Andrews, C.

(2001). Abstract reward and punishment representations in the human

orbitofrontal cortex. Nat. Neurosci. 4, 95–102.

Owen, A.M., and Highfield, R. (2010). The twelve pillars of wisdom. New

Scientist 2784, 38–39.

Owen, A.M., Evans, A.C., and Petrides, M. (1996). Evidence for a two-stage

model of spatial working memory processing within the lateral frontal cortex:

a positron emission tomography study. Cereb. Cortex 6, 31–38.

Petrides, M. (2005). Lateral prefrontal cortex: architectonic and functional

organization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 781–795.

Raven, J.C. (1938). Progressive Matrices: A Perceptual Test of Intelligence

(London: H.K. Lewis).

Rogalsky, C., and Hickok, G. (2011). The role of Broca’s area in sentence

comprehension. J. Cogn. Neurosci. 23, 1664–1680.

Rushton, J.P., and Jensen, A.R. (2005). Thirty years of research on race differ-

ences in cognitive ability. Psychololgy, Public Policy, and Law 11, 235–294.

Spearman, C. (1904). ‘‘General intelligence’’ objectively determined and

measured. Am. J. Psychol. 15, 201–293.

Stone, J.V., and Porrill, J. (1999). Regularisation using spatiotemporal

independence and predictability. Computational Neuroscience Report 201.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.45.7701&rep=rep1&

type=pdf.

Vernon, P.E. (1964). The Structure of Human Abilities (London: Methuen).

Vernon, P.E. (1965). Ability factors and environmental influences. Am. Psychol.

20, 723–733.
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